Resting state fMRI connectivity is sensitive to laminar connectional architecture in the human brain

Author:

Deshpande GopikrishnaORCID,Wang Yun,Robinson Jennifer

Abstract

AbstractPrevious invasive studies indicate that human neocortical graymatter contains cytoarchitectonically distinct layers, with notable differences in their structural connectivity with the rest of the brain. Given recent improvements in the spatial resolution of anatomical and functional magnetic resonance imaging (fMRI), we hypothesize that resting state functional connectivity (FC) derived from fMRI is sensitive to layer-specific thalamo-cortical and cortico-cortical microcircuits. Using sub-millimeter resting state fMRI data obtained at 7 T, we found that: (1) FC between the entire thalamus and cortical layers I and VI was significantly stronger than between the thalamus and other layers. Furthermore, FC between somatosensory thalamus (ventral posterolateral nucleus, VPL) and layers IV, VI of the primary somatosensory cortex were stronger than with other layers; (2) Inter-hemispheric cortico-cortical FC between homologous regions in superficial layers (layers I–III) was stronger compared to deep layers (layers V–VI). These findings are in agreement with structural connections inferred from previous invasive studies that showed that: (i) M-type neurons in the entire thalamus project to layer-I; (ii) Pyramidal neurons in layer-VI target all thalamic nuclei, (iii) C-type neurons in the VPL project to layer-IV and receive inputs from layer-VI of the primary somatosensory cortex, and (iv) 80% of collosal projecting neurons between homologous cortical regions connect superficial layers. Our results demonstrate for the first time that resting state fMRI is sensitive to structural connections between cortical layers (previously inferred through invasive studies), specifically in thalamo-cortical and cortico-cortical networks.

Funder

Samuel Ginn College of Engineering

Publisher

Springer Science and Business Media LLC

Subject

Cognitive Neuroscience,Computer Science Applications,Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3