EEG source imaging of hand movement-related areas: an evaluation of the reconstruction and classification accuracy with optimized channels

Author:

Soler AndresORCID,Giraldo EduardoORCID,Molinas MartaORCID

Abstract

AbstractThe hand motor activity can be identified and converted into commands for controlling machines through a brain-computer interface (BCI) system. Electroencephalography (EEG) based BCI systems employ electrodes to measure the electrical brain activity projected at the scalp and discern patterns. However, the volume conduction problem attenuates the electric potential from the brain to the scalp and introduces spatial mixing to the signals. EEG source imaging (ESI) techniques can be applied to alleviate these issues and enhance the spatial segregation of information. Despite this potential solution, the use of ESI has not been extensively applied in BCI systems, largely due to accuracy concerns over reconstruction accuracy when using low-density EEG (ldEEG), which is commonly used in BCIs. To overcome these accuracy issues in low channel counts, recent studies have proposed reducing the number of EEG channels based on optimized channel selection. This work presents an evaluation of the spatial and temporal accuracy of ESI when applying optimized channel selection towards ldEEG number of channels. For this, a simulation study of source activity related to hand movement has been performed using as a starting point an EEG system with 339 channels. The results obtained after optimization show that the activity in the concerned areas can be retrieved with a spatial accuracy of 3.99, 10.69, and 14.29 mm (localization error) when using 32, 16, and 8 channel counts respectively. In addition, the use of optimally selected electrodes has been validated in a motor imagery classification task, obtaining a higher classification performance when using 16 optimally selected channels than 32 typical electrode distributions under 10–10 system, and obtaining higher classification performance when combining ESI methods with the optimal selected channels.

Funder

NTNU Norwegian University of Science and Technology

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3