Evaluating deep learning EEG-based mental stress classification in adolescents with autism for breathing entrainment BCI

Author:

Sundaresan AvirathORCID,Penchina BrianORCID,Cheong SeanORCID,Grace VictoriaORCID,Valero-Cabré AntoniORCID,Martel AdrienORCID

Abstract

AbstractMental stress is a major individual and societal burden and one of the main contributing factors that lead to pathologies such as depression, anxiety disorders, heart attacks, and strokes. Given that anxiety disorders are one of the most common comorbidities in youth with autism spectrum disorder (ASD), this population is particularly vulnerable to mental stress, severely limiting overall quality of life. To prevent this, early stress quantification with machine learning (ML) and effective anxiety mitigation with non-pharmacological interventions are essential. This study aims to investigate the feasibility of exploiting electroencephalography (EEG) signals for stress assessment by comparing several ML classifiers, namely support vector machine (SVM) and deep learning methods. We trained a total of eleven subject-dependent models-four with conventional brain-computer interface (BCI) methods and seven with deep learning approaches-on the EEG of neurotypical (n=5) and ASD (n=8) participants performing alternating blocks of mental arithmetic stress induction, guided and unguided breathing. Our results show that a multiclass two-layer LSTM RNN deep learning classifier is capable of identifying mental stress from ongoing EEG with an overall accuracy of 93.27%. Our study is the first to successfully apply an LSTM RNN classifier to identify stress states from EEG in both ASD and neurotypical adolescents, and offers promise for an EEG-based BCI for the real-time assessment and mitigation of mental stress through a closed-loop adaptation of respiration entrainment.

Funder

Agence Nationale de la Recherche

H2020 Marie Sklodowska-Curie Actions

Publisher

Springer Science and Business Media LLC

Subject

Cognitive Neuroscience,Computer Science Applications,Neurology

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Deep Learning Approach to Estimate Multi-Level Mental Stress From EEG Using Serious Games;IEEE Journal of Biomedical and Health Informatics;2024-07

2. A review on evaluating mental stress by deep learning using EEG signals;Neural Computing and Applications;2024-05-09

3. Predictive Modelling of Physical Activity Intensity Using Deep Neural Networks;2024 International Conference on Advances in Data Engineering and Intelligent Computing Systems (ADICS);2024-04-18

4. Review of analysis of EEG signals for stress detection;AIP Conference Proceedings;2024

5. Review of Brain-Computer Interface Applications in Neurological Disorders;Algorithms for Intelligent Systems;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3