Explainability of random survival forests in predicting conversion risk from mild cognitive impairment to Alzheimer’s disease

Author:

Sarica Alessia,Aracri Federica,Bianco Maria Giovanna,Arcuri Fulvia,Quattrone Andrea,Quattrone Aldo,

Abstract

AbstractRandom Survival Forests (RSF) has recently showed better performance than statistical survival methods as Cox proportional hazard (CPH) in predicting conversion risk from mild cognitive impairment (MCI) to Alzheimer’s disease (AD). However, RSF application in real-world clinical setting is still limited due to its black-box nature.For this reason, we aimed at providing a comprehensive study of RSF explainability with SHapley Additive exPlanations (SHAP) on biomarkers of stable and progressive patients (sMCI and pMCI) from Alzheimer’s Disease Neuroimaging Initiative. We evaluated three global explanations—RSF feature importance, permutation importance and SHAP importance—and we quantitatively compared them with Rank-Biased Overlap (RBO). Moreover, we assessed whether multicollinearity among variables may perturb SHAP outcome. Lastly, we stratified pMCI test patients in high, medium and low risk grade, to investigate individual SHAP explanation of one pMCI patient per risk group.We confirmed that RSF had higher accuracy (0.890) than CPH (0.819), and its stability and robustness was demonstrated by high overlap (RBO > 90%) between feature rankings within first eight features. SHAP local explanations with and without correlated variables had no substantial difference, showing that multicollinearity did not alter the model. FDG, ABETA42 and HCI were the first important features in global explanations, with the highest contribution also in local explanation. FAQ, mPACCdigit, mPACCtrailsB and RAVLT immediate had the highest influence among all clinical and neuropsychological assessments in increasing progression risk, as particularly evident in pMCI patients’ individual explanation. In conclusion, our findings suggest that RSF represents a useful tool to support clinicians in estimating conversion-to-AD risk and that SHAP explainer boosts its clinical utility with intelligible and interpretable individual outcomes that highlights key features associated with AD prognosis. Graphical Abstract

Publisher

Springer Science and Business Media LLC

Subject

Cognitive Neuroscience,Computer Science Applications,Neurology

Reference73 articles.

1. Association AS (2018) 2018 Alzheimer’s disease facts and figures. Alzheimer’s Dementia 14:367–429

2. Sarica A, Vasta R, Novellino F, Vaccaro MG, Cerasa A, Quattrone A, Initiative ASDN (2018) MRI asymmetry index of hippocampal subfields increases through the continuum from the mild cognitive impairment to the Alzheimer’s disease. Front Neurosci 12:576

3. Mitchell AJ, Shiri-Feshki M (2009) Rate of progression of mild cognitive impairment to dementia–meta-analysis of 41 robust inception cohort studies. Acta Psychiatr Scand 119:252–265

4. Sarica A, Cerasa A, Quattrone A (2017) Random forest algorithm for the classification of neuroimaging data in Alzheimer’s Disease: a systematic review. Front Aging Neurosci 9:329

5. Bron EE, Smits M, van der Flier WM, Vrenken H, Barkhof F, Scheltens P, Papma JM, Steketee RM, Mendez Orellana C, Meijboom R, Pinto M, Meireles JR, Garrett C, Bastos-Leite AJ, Abdulkadir A, Ronneberger O, Amoroso N, Bellotti R, Cardenas-Pena D, Alvarez-Meza AM, Dolph CV, Iftekharuddin KM, Eskildsen SF, Coupe P, Fonov VS, Franke K, Gaser C, Ledig C, Guerrero R, Tong T, Gray KR, Moradi E, Tohka J, Routier A, Durrleman S, Sarica A, Di Fatta G, Sensi F, Chincarini A, Smith GM, Stoyanov ZV, Sorensen L, Nielsen M, Tangaro S, Inglese P, Wachinger C, Reuter M, van Swieten JC, Niessen WJ, Klein S (2015) Alzheimer’s disease neuroimaging, I.: Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: the CADDementia challenge. Neuroimage 111:562–579

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3