The vertebrate taxonomy ontology: a framework for reasoning across model organism and species phenotypes

Author:

Midford Peter E,Dececchi Thomas Alex,Balhoff James P,Dahdul Wasila M,Ibrahim Nizar,Lapp Hilmar,Lundberg John G,Mabee Paula M,Sereno Paul C,Westerfield Monte,Vision Todd J,Blackburn David C

Abstract

Abstract Background A hierarchical taxonomy of organisms is a prerequisite for semantic integration of biodiversity data. Ideally, there would be a single, expansive, authoritative taxonomy that includes extinct and extant taxa, information on synonyms and common names, and monophyletic supraspecific taxa that reflect our current understanding of phylogenetic relationships. Description As a step towards development of such a resource, and to enable large-scale integration of phenotypic data across vertebrates, we created the Vertebrate Taxonomy Ontology (VTO), a semantically defined taxonomic resource derived from the integration of existing taxonomic compilations, and freely distributed under a Creative Commons Zero (CC0) public domain waiver. The VTO includes both extant and extinct vertebrates and currently contains 106,947 taxonomic terms, 22 taxonomic ranks, 104,736 synonyms, and 162,400 cross-references to other taxonomic resources. Key challenges in constructing the VTO included (1) extracting and merging names, synonyms, and identifiers from heterogeneous sources; (2) structuring hierarchies of terms based on evolutionary relationships and the principle of monophyly; and (3) automating this process as much as possible to accommodate updates in source taxonomies. Conclusions The VTO is the primary source of taxonomic information used by the Phenoscape Knowledgebase (http://phenoscape.org/), which integrates genetic and evolutionary phenotype data across both model and non-model vertebrates. The VTO is useful for inferring phenotypic changes on the vertebrate tree of life, which enables queries for candidate genes for various episodes in vertebrate evolution.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Health Informatics,Computer Science Applications,Information Systems

Reference15 articles.

1. Federhen S: The NCBI taxonomy database. Nucl Acids Res. 2013, 40: D136-D143.

2. Eschmeyer WN: Catalog of Fishes. California Academy of Sciences, http://research.calacademy.org/ichthyology/catalog version 3 2013.

3. Mabee PM, Balhoff JP, Dahdul WM, Lapp H, Midford PE, Vision TJ, Westerfield M: 500,000 Fish phenotypes: the new informatics landscape of evolutionary and developmental skeletal biology. J Appl Ichthy. 2012, 28 (3): 300-305. 10.1111/j.1439-0426.2012.01985.x.

4. Dahdul WM, Balhoff JP, Engeman J, Grande T, Hilton E, Kothari C, Lapp H, Lundberg JC, Midford PE, Vision TJ, Westerfield M, Mabee PM: Evolutionary characters, phenotypes and ontologies: curating data from the systematic biology literature. PLoS One. 2010,http://dx.doi.org/10.1371/journal.pone.0010708,

5. Fang F: Phylogenetic analysis of the Asian cyprinid genus Danio (teleostei, cyprinidae). Copeia. 2003, 2003: 714-728. 10.1643/IA03-131.1.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3