Semantic interestingness measures for discovering association rules in the skeletal dysplasia domain

Author:

Paul Razan,Groza Tudor,Hunter Jane,Zankl Andreas

Abstract

Abstract Background Lately, ontologies have become a fundamental building block in the process of formalising and storing complex biomedical information. With the currently existing wealth of formalised knowledge, the ability to discover implicit relationships between different ontological concepts becomes particularly important. One of the most widely used methods to achieve this is association rule mining. However, while previous research exists on applying traditional association rule mining on ontologies, no approach has, to date, exploited the advantages brought by using the structure of these ontologies in computing rule interestingness measures. Results We introduce a method that combines concept similarity metrics, formulated using the intrinsic structure of a given ontology, with traditional interestingness measures to compute semantic interestingness measures in the process of association rule mining. We apply the method in our domain of interest – bone dysplasias – using the core ontologies characterising it and an annotated dataset of patient clinical summaries, with the goal of discovering implicit relationships between clinical features and disorders. Experimental results show that, using the above mentioned dataset and a voting strategy classification evaluation, the best scoring traditional interestingness measure achieves an accuracy of 57.33%, while the best scoring semantic interestingness measure achieves an accuracy of 64.38%, both at the recall cut-off point 5. Conclusions Semantic interestingness measures outperform the traditional ones, and hence show that they are able to exploit the semantic similarities inherently present between ontological concepts. Nevertheless, this is dependent on the domain, and implicitly, on the semantic similarity metric chosen to model it.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Health Informatics,Computer Science Applications,Information Systems

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ontology-based data interestingness: A state-of-the-art review;Natural Language Processing Journal;2023-09

2. Ontology is what makes data interesting: Interestingness framework for COVID-19 corpora;Journal of Information Science;2023-04-05

3. Association mining-based method for enterprise’s technological innovation intelligent decision making under big data;INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL;2023-04-03

4. Ontology-Based Method for Semantic Association Rules;2022 IEEE 19th India Council International Conference (INDICON);2022-11-24

5. Ontology-based Methods for Healthcare System;TENCON 2022 - 2022 IEEE Region 10 Conference (TENCON);2022-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3