Author:
Callahan Alison,Dumontier Michel,Shah Nigam H
Abstract
Abstract
Background
Key to the success of e-Science is the ability to computationally evaluate expert-composed hypotheses for validity against experimental data. Researchers face the challenge of collecting, evaluating and integrating large amounts of diverse information to compose and evaluate a hypothesis. Confronted with rapidly accumulating data, researchers currently do not have the software tools to undertake the required information integration tasks.
Results
We present HyQue, a Semantic Web tool for querying scientific knowledge bases with the purpose of evaluating user submitted hypotheses. HyQue features a knowledge model to accommodate diverse hypotheses structured as events and represented using Semantic Web languages (RDF/OWL). Hypothesis validity is evaluated against experimental and literature-sourced evidence through a combination of SPARQL queries and evaluation rules. Inference over OWL ontologies (for type specifications, subclass assertions and parthood relations) and retrieval of facts stored as Bio2RDF linked data provide support for a given hypothesis. We evaluate hypotheses of varying levels of detail about the genetic network controlling galactose metabolism in Saccharomyces cerevisiae to demonstrate the feasibility of deploying such semantic computing tools over a growing body of structured knowledge in Bio2RDF.
Conclusions
HyQue is a query-based hypothesis evaluation system that can currently evaluate hypotheses about the galactose metabolism in S. cerevisiae. Hypotheses as well as the supporting or refuting data are represented in RDF and directly linked to one another allowing scientists to browse from data to hypothesis and vice versa. HyQue hypotheses and data are available at http://semanticscience.org/projects/hyque.
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Health Informatics,Computer Science Applications,Information Systems
Reference34 articles.
1. Fedoroff N, Racunas SA, Shrager J: Making Biological Computing Smarter. The Scientist. 2005, 19: 20-21.
2. Slater T, Bouton C, Huang ES: Beyond data integration. Drug Discovery Today. 2008, 13: 584-589. 10.1016/j.drudis.2008.01.008.
3. Antezana E, Kuiper M, Mironov V: Biological knowledge management: the emerging role of the Semantic Web technologies. Brief Bioinform. 2009, 10: 392-407. 10.1093/bib/bbp024.
4. Shah N, Musen MA: Ontologies in support of formal representations of biological systems. The Handbook on Ontologies. Edited by: Staab S, Studer R. 2010, Springer Berlin Heidelberg, 445-461. 2
5. Belleau F, Nolin MA, Tourigny N, Rigault P, Morissette J: Bio2RDF: towards a mashup to build bioinformatics knowledge systems. Journal of Biomedical Informatics. 2008, 41: 706-716. 10.1016/j.jbi.2008.03.004.
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献