Author:
Aoki-Kinoshita Kiyoko F,Bolleman Jerven,Campbell Matthew P,Kawano Shin,Kim Jin-Dong,Lütteke Thomas,Matsubara Masaaki,Okuda Shujiro,Ranzinger Rene,Sawaki Hiromichi,Shikanai Toshihide,Shinmachi Daisuke,Suzuki Yoshinori,Toukach Philip,Yamada Issaku,Packer Nicolle H,Narimatsu Hisashi
Abstract
Abstract
Background
Glycoscience is a research field focusing on complex carbohydrates (otherwise known as glycans)a, which can, for example, serve as “switches” that toggle between different functions of a glycoprotein or glycolipid. Due to the advancement of glycomics technologies that are used to characterize glycan structures, many glycomics databases are now publicly available and provide useful information for glycoscience research. However, these databases have almost no link to other life science databases.
Results
In order to implement support for the Semantic Web most efficiently for glycomics research, the developers of major glycomics databases agreed on a minimal standard for representing glycan structure and annotation information using RDF (Resource Description Framework). Moreover, all of the participants implemented this standard prototype and generated preliminary RDF versions of their data. To test the utility of the converted data, all of the data sets were uploaded into a Virtuoso triple store, and several SPARQL queries were tested as “proofs-of-concept” to illustrate the utility of the Semantic Web in querying across databases which were originally difficult to implement.
Conclusions
We were able to successfully retrieve information by linking UniCarbKB, GlycomeDB and JCGGDB in a single SPARQL query to obtain our target information. We also tested queries linking UniProt with GlycoEpitope as well as lectin data with GlycomeDB through PDB. As a result, we have been able to link proteomics data with glycomics data through the implementation of Semantic Web technologies, allowing for more flexible queries across these domains.
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Health Informatics,Computer Science Applications,Information Systems
Reference24 articles.
1. Committee on Assessing the Importance and Impact of Glycomics and Glycosciences, Board on Chemical Sciences and Technology, Board on Life Sciences, Division on Earth and Life Studies, National Research Council: Transforming Glycoscience: A Roadmap for the Future. 2012, Washington, D.C., USA: The National Academic Press
2. Aoki-Kinoshita KF: Using databases and web resources for glycomics research. Mol Cell Proteomics. 2013, 12: 1036-1045. 10.1074/mcp.R112.026252.
3. Doubet S, Albersheim P: CarbBank. Glycobiology. 1992, 2: 505-
4. Lütteke T, Bohne-Lang A, Loss A, Goetz T, Frank M, von der Lieth CW: GLYCOSCIENCES: de: an Internet portal to support glycomics and glycobiology research. Glycobiology. 2006, 16: 71R-81R. 10.1093/glycob/cwj049.
5. Hashimoto K, Goto S, Kawano S, Aoki-Kinoshita KF, Ueda N, Hamajima M, Kawasaki T, Kanehisa M: KEGG as a glycome informatics resource. Glycobiology. 2006, 16: 63R-70R. 10.1093/glycob/cwj010.
Cited by
48 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献