Extraction of potential adverse drug events from medical case reports

Author:

Gurulingappa Harsha,Mateen‐Rajpu Abdul,Toldo Luca

Abstract

Abstract Abstract The sheer amount of information about potential adverse drug events publishedin medical case reports pose major challenges for drug safety experts toperform timely monitoring. Efficient strategies for identification andextraction of information about potential adverse drug events fromfree‐text resources are needed to support pharmacovigilance researchand pharmaceutical decision making. Therefore, this work focusses on theadaptation of a machine learning‐based system for the identificationand extraction of potential adverse drug event relations from MEDLINE casereports. It relies on a high quality corpus that was manually annotatedusing an ontology‐driven methodology. Qualitative evaluation of thesystem showed robust results. An experiment with large scale relationextraction from MEDLINE delivered under‐identified potential adversedrug events not reported in drug monographs. Overall, this approach providesa scalable auto‐assistance platform for drug safety professionals toautomatically collect potential adverse drug events communicated asfree‐text data.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Health Informatics,Computer Science Applications,Information Systems

Reference25 articles.

1. Hauben M, Bate A: Decision support methods for the detection of adverse events inpost‐marketing data. Drug Discov Today. 2009, 14 (7‐8): 343-357. 10.1016/j.drudis.2008.12.012.

2. Vandenbroucke JP: In defense of case reports and case series. Ann Intern Med. 2001, 134 (4): 330-334.

3. Wang X, Hripcsak G, Markatou M, Friedman C: Active computerized pharmacovigilance using natural language processing,statistics, and electronic health records: a feasibility study. J Am Med Inform Assoc. 2009, 16 (3): 328-337. 10.1197/jamia.M3028.

4. Leaman R, Wojtulewicz L, Sullivan R, Skariah A, Yang J, Gonzalez G: Towards internet‐age pharmacovigilance: extracting adverse drugreactions from user posts to health‐related social networks. Proceedings of the 2010 Workshop on Biomedical Natural LanguageProcessing. Edited by: Dina Demner‐Fushman K, Cohen Bretonnel, Ananiadou Sophia, PestianJohn, Tsujii Jun’ichi, Webber Bonnie. 2010, Uppsala, Sweden, 117-125.http://delivery.acm.org/10.1145/1870000/1869976/p117–leaman.pdf,

5. Gurulingappa H, Fluck J, Hofmann‐Apitius M, Toldo L: Identification of Adverse Drug Event Assertive Sentences in Medical CaseReports. First International Workshop on Knowledge Discovery and Health CareManagement (KD‐HCM), European Conference on Machine Learning andPrinciples and Practice of Knowledge Discovery in Databases (ECML PKDD). Edited by: Rangwala H, Tagarelli A, Wale N, Karypis G. 2011, Athens, Greece, 16‐27-16‐27.http://www.cs.gmu.edu/hrangwal/kd–hcm/proc/KDHCM11_procs.pdf,

Cited by 132 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3