Author:
Moreno-Vedia Juan,Llop Dídac,Rodríguez-Calvo Ricardo,Plana Núria,Amigó Núria,Rosales Roser,Esteban Yaiza,Girona Josefa,Masana Lluís,Ibarretxe Daiana
Abstract
Abstract
Background and aim
Circulating biomarkers of metabolic and cardiovascular diseases can help in the early detection and prevention of those diseases. Using proton nuclear magnetic resonance (1H-NMR), we aimed to study the plasma levels of low-molecular-weight metabolites (LMWMs) in a cohort of 307 patients with metabolic diseases to assess their relationships with type-2 diabetes (T2D) and incident atherosclerotic cardiovascular disease (ASCVD).
Methods
We conducted a cross-sectional and prospective study. We included 307 patients attending the Lipid Unit of our University Hospital for the treatment of the following metabolic disturbances and associated disorders: T2D (73.9%), obesity (58.7%), and hypertension (55.1%). 1H-NMR was used to study the plasma levels of 13 LMWMs. LMWM serum concentrations were evaluated in patients with and without T2D. and the correlations with several parameters and their associations with T2D were analyzed. The association between LMWM levels at baseline and the development of ASCVD in patients with T2D after 10 years of follow-up was also evaluated.
Results
Among the LMWMs measured, the branched-chain amino acids (BCAAs) valine, leucine and isoleucine showed a positive association with several clinical and lipid-related biochemical parameters and inflammatory markers (p < 0.05). Likewise, these three BCAAS were associated with diabetes even after adjusting for covariates (p < 0.05). During the follow-up period of 10 years, 29 of the 185 patients with diabetes at baseline (15.68%) developed ASCVD. After adjusting for clinical covariates, baseline levels of valine and alanine were associated with the development of ASCVD (p < 0.05).
Conclusion
Overall, our results indicated that plasma levels of LMWMs measured by 1H-NMR could be potential biomarkers associated with T2D. Moreover, alanine and valine can help in the early detection of the cardiovascular risk associated with this metabolic disease.
Funder
Instituto de Salud Carlos III
Publisher
Springer Science and Business Media LLC
Subject
Cardiology and Cardiovascular Medicine,Endocrinology, Diabetes and Metabolism
Reference48 articles.
1. Delgado-Velandia M, Gonzalez-Marrachelli V, Domingo-Relloso A, Galvez-Fernandez M, Grau-Perez M, Olmedo P, et al. Healthy lifestyle, metabolomics and incident type 2 diabetes in a population-based cohort from Spain. Int J Behav Nutr Phys Act. 2022;19(1):1–13.
2. Buergel T, Steinfeldt J, Ruyoga G, Pietzner M, Bizzarri D, Vojinovic D, et al. Metabolomic profiles predict individual multidisease outcomes. Nat Med. 2022;28(11):2309–20.
3. Pietzner M, Stewart ID, Raffler J, Khaw KT, Michelotti GA, Kastenmüller G, et al. Plasma metabolites to profile pathways in noncommunicable disease multimorbidity. Nat Med. 2021;27(3):471–9.
4. Rankin NJ, Preiss D, Welsh P, Burgess KEV, Nelson SM, Lawlor DA, et al. The emergence of proton nuclear magnetic resonance metabolomics in the cardiovascular arena as viewed from a clinical perspective. Atherosclerosis. 2014;237(1):287–300.
5. Amigó N, Fuertes-Martín R, Malo AI, Plana N, Ibarretxe D, Girona J, et al. Glycoprotein profile measured by a 1H-nuclear magnetic resonance based on approach in patients with diabetes: a new robust method to assess inflammation. Life (Basel). 2021;11(12):1407.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献