Author:
Hasebe Masashi,Yoshiji Satoshi,Keidai Yamato,Minamino Hiroto,Murakami Takaaki,Tanaka Daisuke,Fujita Yoshihito,Harada Norio,Hamasaki Akihiro,Inagaki Nobuya
Abstract
Abstract
Background
Effects of antihyperglycemic therapies on cardiovascular and heart failure (HF) risks have varied widely across cardiovascular outcome trials (CVOTs), and underlying factors remain incompletely understood. We aimed to determine the relationships of glycated hemoglobin (HbA1c) or bodyweight changes with these outcomes in all CVOTs of antihyperglycemic therapies.
Methods
We searched PubMed and EMBASE up to 25 January 2023 for all randomized controlled CVOTs of antihyperglycemic therapies reporting both major adverse cardiovascular events (MACE) and HF outcomes in patients with type 2 diabetes or prediabetes. We performed meta-regression analyses following random-effects meta-analyses to evaluate the effects of HbA1c or bodyweight reductions on each outcome.
Results
Thirty-five trials comprising 256,524 patients were included. Overall, antihyperglycemic therapies reduced MACE by 9% [risk ratio (RR): 0.91; 95% confidence interval (CI) 0.88–0.94; P < 0.001; I2 = 36.5%]. In meta-regression, every 1% greater reduction in HbA1c was associated with a 14% reduction in the RR of MACE (95% CI 4–24; P = 0.010), whereas bodyweight change was not associated with the RR of MACE. The magnitude of the reduction in MACE risk associated with HbA1c reduction was greater in trials with a higher baseline prevalence of atherosclerotic cardiovascular disease. On the other hand, antihyperglycemic therapies showed no overall significant effect on HF (RR: 0.95; 95% CI 0.87–1.04; P = 0.28; I2 = 75.9%). In a subgroup analysis based on intervention type, sodium-glucose cotransporter-2 inhibitors (SGLT2i) conferred the greatest HF risk reduction (RR: 0.68; 95% CI 0.62–0.75; P < 0.001; I2 = 0.0%). In meta-regression, every 1 kg bodyweight reduction, but not HbA1c reduction, was found to reduce the RR of HF by 7% (95% CI 4–10; P < 0.001); however, significant residual heterogeneity (P < 0.001) was observed, and SGLT2i reduced HF more than could be explained by HbA1c or bodyweight reductions.
Conclusions
Antihyperglycemic therapies reduce MACE in an HbA1c-dependent manner. These findings indicate that HbA1c can be a useful marker of MACE risk reduction across a wide range of antihyperglycemic therapies, including drugs with pleiotropic effects. In contrast, HF is reduced not in an HbA1c-dependent but in a bodyweight-dependent manner. Notably, SGLT2i have shown class-specific benefits for HF beyond HbA1c or bodyweight reductions.
Publisher
Springer Science and Business Media LLC
Subject
Cardiology and Cardiovascular Medicine,Endocrinology, Diabetes and Metabolism
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献