Author:
Liu Ruijiao,Duan Tengfei,Yu Li,Tang Yongzhong,Liu Shikun,Wang Chunjiang,Fang Wei-Jin
Abstract
Abstract
Background
Increased acid sphingomyelinase (ASMase) activity is associated with insulin resistance and cardiac dysfunction. However, the effects of ASMase on diabetic cardiomyopathy (DCM) and the molecular mechanism(s) underlying remain to be elucidated. We here investigated whether ASMase caused DCM through NADPH oxidase 4-mediated apoptosis.
Methods and results
We used pharmacological and genetic approaches coupled with study of murine and cell line samples to reveal the mechanisms initiated by ASMase in diabetic hearts. The protein expression and activity of ASMase were upregulated, meanwhile ceramide accumulation was increased in the myocardium of HFD mice. Inhibition of ASMase with imipramine (20 mg Kg−1 d−1) or siRNA reduced cardiomyocyte apoptosis, fibrosis, and mitigated cardiac hypertrophy and cardiac dysfunction in HFD mice. The similar effects were observed in cardiomyocytes treated with high glucose (HG, 30 mmol L−1) + palmitic acid (PA, 100 μmol L−1) or C16 ceramide (CER, 20 μmol L−1). Interestingly, the cardioprotective effect of ASMase inhibition was not accompanied by reduced ceramide accumulation, indicating a ceramide-independent manner. The mechanism may involve activated NADPH oxidase 4 (NOX4), increased ROS generation and triggered apoptosis. Suppression of NOX4 with apocynin prevented HG + PA and CER incubation induced Nppb and Myh7 pro-hypertrophic gene expression, ROS production and apoptosis in H9c2 cells. Furthermore, cardiomyocyte-specific ASMase knockout (ASMaseMyh6KO) restored HFD-induced cardiac dysfunction, remodeling, and apoptosis, whereas NOX4 protein expression was downregulated.
Conclusions
These results demonstrated that HFD-mediated activation of cardiomyocyte ASMase could increase NOX4 expression, which may stimulate oxidative stress, apoptosis, and then cause metabolic cardiomyopathy.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Hunan Province
Publisher
Springer Science and Business Media LLC
Subject
Cardiology and Cardiovascular Medicine,Endocrinology, Diabetes and Metabolism
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献