Author:
Rolver Monica G,Emanuelsson Frida,Nordestgaard Børge G,Benn Marianne
Abstract
Abstract
Objective
To investigate the contributions of low-grade inflammation measured by C-reactive protein (CRP), hyperglycaemia, and type 2 diabetes to risk of ischemic heart disease (IHD) and cardiovascular disease (CVD) death in the general population, and whether hyperglycaemia and high CRP are causally related.
Research design and methods
Observational and bidirectional, one-sample Mendelian randomization (MR) analyses in 112,815 individuals from the Copenhagen General Population Study and the Copenhagen City Heart Study, and bidirectional, two-sample MR with summary level data from two publicly available consortia, CHARGE and MAGIC.
Results
Observationally, higher plasma CRP was associated with stepwise higher risk of IHD and CVD death, with hazard ratios and 95% confidence intervals (95%CI) of 1.50 (1.38, 1.62) and 2.44 (1.93, 3.10) in individuals with the 20% highest CRP concentrations. The corresponding hazard ratios for elevated plasma glucose were 1.10 (1.02, 1.18) and 1.22 (1.01, 1.49), respectively. Cumulative incidences of IHD and CVD death were 365% and 592% higher, respectively, in individuals with both type 2 diabetes and plasma CRP ≥ 2 mg/L compared to individuals without either. Plasma CRP and glucose were observationally associated (β-coefficient: 0.02 (0.02, 0.03), p = 3 × 10− 20); however, one- and two-sample MR did not support a causal effect of CRP on glucose (−0.04 (−0.12, 0.32) and − 0.03 (−0.13, 0.06)), nor of glucose on CRP (−0.01 (−0.08, 0.07) and − 0.00 (−0.14, 0.13)).
Conclusions
Elevated concentrations of plasma CRP and glucose are predictors of IHD and CVD death in the general population. We found no genetic association between CRP and glucose, or vice versa, suggesting that lowering glucose pharmacologically does not have a direct effect on low-grade inflammation.
Publisher
Springer Science and Business Media LLC
Reference54 articles.
1. Galicia-Garcia U, Benito-Vicente A, Jebari S, Larrea-Sebal A, Siddiqi H, Uribe KB, et al. Pathophysiology of type 2 diabetes Mellitus. Int J Mol Sci. 2020;21(6275):1–34.
2. Webber S. International Diabetes Federation. Diabetes Res Clin Pract. 2021;102(2):147–8.
3. Stumvoll M, Goldstein BJ, van Haeften TW. Type 2 diabetes: principles of pathogenesis and therapy. Lancet. 2005;365:1333–46.
4. Zacho J, Tybjærg-Hansen A, Jensen JS, Grande P, Sillesen H, Nordestgaard BG. Genetically Elevated C-Reactive Protein and Ischemic Vascular Disease. N Engl J Med [Internet]. 2008;359(18):1897–908. Available from: http://www.nejm.org/doi/abs/https://doi.org/10.1056/NEJMoa0707402.
5. Cushman M, Arnold AM, Psaty BM, Manolio TA, Kuller LH, Burke GL, et al. C-reactive protein and the 10-year incidence of coronary heart disease in older men and women: the cardiovascular health study. Circulation. 2005;112(1):25–31.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献