Use of the energy waveform electrocardiogram to detect subclinical left ventricular dysfunction in patients with type 2 diabetes mellitus

Author:

Soh Cheng Hwee,de Sá Alex G. C.,Potter Elizabeth,Halabi Amera,Ascher David B.,Marwick Thomas H.

Abstract

Abstract Background Recent guidelines propose N-terminal pro-B-type natriuretic peptide (NT-proBNP) for recognition of asymptomatic left ventricular (LV) dysfunction (Stage B Heart Failure, SBHF) in type 2 diabetes mellitus (T2DM). Wavelet Transform based signal-processing transforms electrocardiogram (ECG) waveforms into an energy distribution waveform (ew)ECG, providing frequency and energy features that machine learning can use as additional inputs to improve the identification of SBHF. Accordingly, we sought whether machine learning model based on ewECG features was superior to NT-proBNP, as well as a conventional screening tool—the Atherosclerosis Risk in Communities (ARIC) HF risk score, in SBHF screening among patients with T2DM. Methods Participants in two clinical trials of SBHF (defined as diastolic dysfunction [DD], reduced global longitudinal strain [GLS ≤ 18%] or LV hypertrophy [LVH]) in T2DM underwent 12-lead ECG with additional ewECG feature and echocardiography. Supervised machine learning was adopted to identify the optimal combination of ewECG extracted features for SBHF screening in 178 participants in one trial and tested in 97 participants in the other trial. The accuracy of the ewECG model in SBHF screening was compared with NT-proBNP and ARIC HF. Results SBHF was identified in 128 (72%) participants in the training dataset (median 72 years, 41% female) and 64 (66%) in the validation dataset (median 70 years, 43% female). Fifteen ewECG features showed an area under the curve (AUC) of 0.81 (95% CI 0.787–0.794) in identifying SBHF, significantly better than both NT-proBNP (AUC 0.56, 95% CI 0.44–0.68, p < 0.001) and ARIC HF (AUC 0.67, 95%CI 0.56–0.79, p = 0.002). ewECG features were also led to robust models screening for DD (AUC 0.74, 95% CI 0.73–0.74), reduced GLS (AUC 0.76, 95% CI 0.73–0.74) and LVH (AUC 0.90, 95% CI 0.88–0.89). Conclusions Machine learning based modelling using additional ewECG extracted features are superior to NT-proBNP and ARIC HF in SBHF screening among patients with T2DM, providing an alternative HF screening strategy for asymptomatic patients and potentially act as a guidance tool to determine those who required echocardiogram to confirm diagnosis. Trial registration LEAVE-DM, ACTRN 12619001393145 and Vic-ELF, ACTRN 12617000116325

Funder

National Health and Medical Research Council

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3