Endothelial MICU1 alleviates diabetic cardiomyopathy by attenuating nitrative stress-mediated cardiac microvascular injury

Author:

Shi Xide,Liu Chao,Chen Jiangwei,Zhou Shiqiang,Li Yajuan,Zhao Xingcheng,Xing Jinliang,Xue Junhui,Liu Fengzhou,Li Fei

Abstract

Abstract Background Myocardial microvascular injury is the key event in early diabetic heart disease. The injury of myocardial microvascular endothelial cells (CMECs) is the main cause and trigger of myocardial microvascular disease. Mitochondrial calcium homeostasis plays an important role in maintaining the normal function, survival and death of endothelial cells. Considering that mitochondrial calcium uptake 1 (MICU1) is a key molecule in mitochondrial calcium regulation, this study aimed to investigate the role of MICU1 in CMECs and explore its underlying mechanisms. Methods To examine the role of endothelial MICU1 in diabetic cardiomyopathy (DCM), we used endothelial-specific MICU1ecKO mice to establish a diabetic mouse model and evaluate the cardiac function. In addition, MICU1 overexpression was conducted by injecting adeno-associated virus 9 carrying MICU1 (AAV9-MICU1). Transcriptome sequencing technology was used to explore underlying molecular mechanisms. Results Here, we found that MICU1 expression is decreased in CMECs of diabetic mice. Moreover, we demonstrated that endothelial cell MICU1 knockout exacerbated the levels of cardiac hypertrophy and interstitial myocardial fibrosis and led to a further reduction in left ventricular function in diabetic mice. Notably, we found that AAV9-MICU1 specifically upregulated the expression of MICU1 in CMECs of diabetic mice, which inhibited nitrification stress, inflammatory reaction, and apoptosis of the CMECs, ameliorated myocardial hypertrophy and fibrosis, and promoted cardiac function. Further mechanistic analysis suggested that MICU1 deficiency result in excessive mitochondrial calcium uptake and homeostasis imbalance which caused nitrification stress-induced endothelial damage and inflammation that disrupted myocardial microvascular endothelial barrier function and ultimately promoted DCM progression. Conclusions Our findings demonstrate that MICU1 expression was downregulated in the CMECs of diabetic mice. Overexpression of endothelial MICU1 reduced nitrification stress induced apoptosis and inflammation by inhibiting mitochondrial calcium uptake, which improved myocardial microvascular function and inhibited DCM progression. Our findings suggest that endothelial MICU1 is a molecular intervention target for the potential treatment of DCM.

Funder

National Natural Science Foundation of China

General projects of key R&D plans

Publisher

Springer Science and Business Media LLC

Subject

Cardiology and Cardiovascular Medicine,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3