Empagliflozin protects against heart failure with preserved ejection fraction partly by inhibiting the senescence-associated STAT1–STING axis

Author:

Shi Ying,Zhao Lili,Wang Jing,Liu Xiankun,Bai Yiming,Cong Hongliang,Li Ximing

Abstract

AbstractHeart failure with preserved ejection fraction (HFpEF) is a mortal clinical syndrome without effective therapies. Empagliflozin (EMPA) improves cardiovascular outcomes in HFpEF patients, but the underlying mechanism remains elusive. Here, mice were fed a high-fat diet (HFD) supplemented with L-NAME for 12 weeks and subsequently intraperitoneally injected with EMPA for another 4 weeks. A 4D-DIA proteomic assay was performed to detect protein changes in the failing hearts. We identified 310 differentially expressed proteins (DEPs) (ctrl vs. HFpEF group) and 173 DEPs (HFpEF vs. EMPA group). The regulation of immune system processes was enriched in all groups and the interferon response genes (STAT1, Ifit1, Ifi35 and Ifi47) were upregulated in HFpEF mice but downregulated after EMPA administration. In addition, EMPA treatment suppressed the increase in the levels of aging markers (p16 and p21) in HFpEF hearts. Further bioinformatics analysis verified STAT1 as the hub transcription factor during pathological changes in HFpEF mice. We next treated H9C2 cells with IFN-γ, a primary agonist of STAT1 phosphorylation, to investigate whether EMPA plays a beneficial role by blocking STAT1 activation. Our results showed that IFN-γ treatment caused cardiomyocyte senescence and STAT1 activation, which were inhibited by EMPA administration. Notably, STAT1 inhibition significantly reduced cellular senescence possibly by regulating STING expression. Our findings revealed that EMPA mitigates cardiac inflammation and aging in HFpEF mice by inhibiting STAT1 activation. The STAT1–STING axis may act as a pivotal mechanism in the pathogenesis of HFpEF, especially under inflammatory and aging conditions. Graphical abstract The schematic figure depicts a mechanism model of the STAT1–STING axis in HFpEF (this figure was drawn using FigDraw software).

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3