MLKL-mediated necroptosis is a target for cardiac protection in mouse models of type-1 diabetes

Author:

Cao Ting,Ni Rui,Ding Weimin,Ji Xiaoyun,Li Lan,Liao Guangneng,Lu Yanrong,Fan Guo-Chang,Zhang Zhuxu,Peng Tianqing

Abstract

Abstract Background Cardiomyocyte death contributes to cardiac pathology of diabetes. Studies have shown that the RIPK3/MLKL necroptosis signaling is activated in diabetic hearts. Deletion of RIPK3 was reported to attenuate myocardial injury and heart dysfunction in streptozocin (STZ)-induced diabetic mice, suggesting a potential role of necroptosis in diabetic cardiomyopathy. This study characterized cardiomyocyte necroptosis in diabetic hearts and investigated whether MLKL-mediated necroptosis is a target for cardiac protection in diabetes. Methods Type 1 diabetes was induced in RIPK3 knockout, MLKL knockout and wild-type mice. Akita Type-1 diabetic mice were injected with shRNA for MLKL. Myocardial function was assessed by echocardiography. Immuno-histological analyses determined cardiomyocyte death and fibrosis in the heart. Cultured adult mouse cardiomyocytes were incubated with high glucose in the presence of various drugs. Cell death and phosphorylation of RIPK3 and MLKL were analysed. Results We showed that the levels of phosphorylated RIPK3 and MLKL were higher in high glucose-stimulated cardiomyocytes and hearts of STZ-induced type-1 diabetic mice, akita mice and type-1 diabetic monkeys when compared to non-diabetic controls. Inhibition of RIPK3 by its pharmacological inhibitor or gene deletion, or MLKL deletion prevented high glucose-induced MLKL phosphorylation and attenuated necroptosis in cardiomyocytes. In STZ-induced type-1 diabetic mice, cardiomyocyte necroptosis was present along with elevated cardiac troponin I in serum and MLKL oligomerization, and co-localized with phosphorylated MLKL. Deletion of RIPK3 or MLKL prevented MLKL phosphorylation and cardiac necroptosis, attenuated serum cardiac troponin I levels, reduced myocardial collagen deposition and improved myocardial function in STZ-injected mice. Additionally, shRNA-mediated down-regulation of MLKL reduced cardiomyocyte necroptosis in akita mice. Interestingly, incubation with anti-diabetic drugs (empagliflozin and metformin) prevented phosphorylation of RIPK3 and MLKL, and reduced cell death in high glucose-induced cardiomyocytes. Conclusions We have provided evidence that cardiomyocyte necroptosis is present in diabetic hearts and that MLKL-mediated cardiomyocyte necroptosis contributes to diabetic cardiomyopathy. These findings highlight MLKL-mediated necroptosis as a target for cardiac protection in diabetes.

Funder

National Natural Science Foundation of China

Heart and Stroke Foundation of Canada

Publisher

Springer Science and Business Media LLC

Subject

Cardiology and Cardiovascular Medicine,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3