Cholesin receptor signalling is active in cardiovascular system-associated adipose tissue and correlates with SGLT2i treatment in patients with diabetes

Author:

Ryk AleksandraORCID,Marcinkiewicz AnnaORCID,Chrzanowski JędrzejORCID,Michalak Arkadiusz MariuszORCID,Dróżdz IzabelaORCID,Burzyński Jacek,Krejca MichałORCID,Fendler WojciechORCID

Abstract

Abstract Background Recently deorphanized G protein-coupled receptor 146 (GPR146) was shown to respond to signal from a newly identified hormone—cholesin—and to play a role in hepatic lipid metabolism. However, the importance of its biological activity in human organism remains elusive, mainly due to the lack of studies on human tissues up to this point. This study aimed to identify the cholesin receptor-associated genes and clinical factors linked with their expression in cardiovascular system and associated adipose tissues. Methods Right cardiac auricle, aortic wall, saphenous vein, and adipose tissue (periaortic-PAT, epicardial-EAT, thymic-TAT) samples were collected during coronary artery bypass grafting. Clinical records of the study participants were assessed for the presence of diabetes, medications taken and serum cholesterol levels. GPR146 mRNA expression in all gathered tissues was assessed with qPCR, and RNA seqencing was performed in selected tissues of 20 individuals to identify pathways associated with GPR146 expression. Results We included 46 participants [37 male, 23 with type 2 diabetes, median age 68.50 (Q1–Q3: 63.00–72.00) years, BMI 28.39 (26.06–31.49) kg/m2]. GPR146 expression in adipose tissues significantly correlated with BMI, c-peptide, total cholesterol, and LDL concentrations. Selected metabolic pathways were significantly and positively enriched in GPR146-dependent manner. GPR146-coexpressed genes contained key regulators of lipid metabolism involved in such pathways as fatty acid metabolism, tricarboxilic acid cycle and peroxisomal metabolism. Those genes correlated positively with serum concentrations of LDL, HDL, and total cholesterol. SGLT2i treatment was associated with inversion of GPR146-related signature in EAT, suggesting potential impact on cholesin-GPR146 network. Conclusions GPR146 expression is associated with serum lipids and metabolically-relevant transcriptomic changes in EAT similar to SGLT2i-associated ones. Graphical abstract

Funder

Diabetes Poland

National Science Center, Poland

Minister of Education and Science program “Perły Nauki”

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3