Plasma wave observation using waveform capture in the Lunar Radar Sounder on board the SELENE spacecraft
-
Published:2008-04
Issue:4
Volume:60
Page:341-351
-
ISSN:1880-5981
-
Container-title:Earth, Planets and Space
-
language:en
-
Short-container-title:Earth Planet Sp
Author:
Kasahara Yoshiya,Goto Yoshitaka,Hashimoto Kozo,Imachi Tomohiko,Kumamoto Atsushi,Ono Takayuki,Matsumoto Hiroshi
Abstract
Abstract
The waveform capture (WFC) instrument is one of the subsystems of the Lunar Radar Sounder (LRS) on board the SELENE spacecraft. By taking advantage of a moon orbiter, the WFC is expected to measure plasma waves and radio emissions that are generated around the moon and/or that originated from the sun and from the earth and other planets. It is a high-performance and multifunctional software receiver in which most functions are realized by the onboard software implemented in a digital signal processor (DSP). The WFC consists of a fast-sweep frequency analyzer (WFC-H) covering the frequency range from 1 kHz to 1 MHz and a waveform receiver (WFC-L) in the frequency range from 10 Hz to 100 kHz. By introducing the hybrid IC called PDC in the WFC-H, we created a spectral analyzer with a very high time and frequency resolution. In addition, new techniques such as digital filtering, automatic filter selection, and data compression are implemented for data processing of the WFC-L to extract the important data adequately under the severe restriction of total amount of telemetry data. Because of the flexibility of the instruments, various kinds of observation modes can be achieved, and we expect the WFC to generate many interesting data.
Publisher
Springer Science and Business Media LLC
Subject
Space and Planetary Science,Geology
Reference28 articles.
1. Analog Devices Inc., AD9260 data sheet, 2000. 2. Anderson, R. R., D. A. Gurnett, H. Matsumoto, K. Hashimoto, H. Kojima, Y. Kasaba, M. L. Kaiser, G. Rostoker, J.-L. Bougeret, J.-L. Steinberg, I. Nagano, and H. Singer, Observations of low frequency terrestrial type III bursts by GEOTAIL and WIND and their association with isolated geomagnetic disturbances detected by ground and space-borne instruments, in Planetary Radio Emissions IV, Proc. Graz Conf., edited by H. O. Rucker, S. J. Bauer, and A. Lecacheux, Austrian Academy of Sciences Press, Vienna, 241–250, 1997. 3. Bougeret, J.-L., M. L. Kaiser, P. J. Kellogg, R. Manning, K. Goetz, S. J. Monson, N. Monge, L. Friel, C. A. Meetre, C. Perche, L. Sitruk, and S. Hoang, WAVES: The radio and plasma wave investigation on the wind spacecraft, Space Sci. Rev., 71, 231–263, 1995. 4. Farrell, W. M., M. L. Kaiser, and J. T. Steinberg, Electrostatic instability in the central lunar wake: A process for replenishing the plasma void?, Geophys. Res. Lett., 24(9), 1135–1138, 1997. 5. Hashimoto, K., H. Matsumoto, T. Murata, M. L. Kaiser, and J.-L. Bougeret, Comparison of AKR simultaneously observed by the GEOTAIL and WIND spacecraft, Geophys. Res. Lett., 25(6), 853–856, 1998.
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|