Viral nervous necrosis resistance in gilthead sea bream (Sparus aurata) at the larval stage: heritability and accuracy of genomic prediction with different training and testing settings

Author:

Faggion SaraORCID,Carnier Paolo,Franch Rafaella,Babbucci Massimiliano,Pascoli Francesco,Dalla Rovere Giulia,Caggiano Massimo,Chavanne Hervé,Toffan Anna,Bargelloni Luca

Abstract

AbstractBackgroundThe gilthead sea bream (Sparus aurata) has long been considered resistant to viral nervous necrosis (VNN), until recently, when significant mortalities caused by a reassortant nervous necrosis virus (NNV) strain were reported. Selective breeding to enhance resistance against NNV might be a preventive action. In this study, 972 sea bream larvae were subjected to a NNV challenge test and the symptomatology was recorded. All the experimental fish and their parents were genotyped using a genome-wide single nucleotide polymorphism (SNP) array consisting of over 26,000 markers.ResultsEstimates of pedigree-based and genomic heritabilities of VNN symptomatology were consistent with each other (0.21, highest posterior density interval at 95% (HPD95%): 0.1–0.4; 0.19, HPD95%: 0.1–0.3, respectively). The genome-wide association study suggested one genomic region, i.e., in linkage group (LG) 23 that might be involved in sea bream VNN resistance, although it was far from the genome-wide significance threshold. The accuracies (r) of the predicted estimated breeding values (EBV) provided by three Bayesian genomic regression models (Bayes B, Bayes C, and Ridge Regression) were consistent and on average were equal to 0.90 when assessed in a set of cross-validation (CV) procedures. When genomic relationships between training and testing sets were minimized, accuracy decreased greatly (r = 0.53 for a validation based on genomic clustering,r = 0.12 for a validation based on a leave-one-family-out approach focused on the parents of the challenged fish). Classification of the phenotype using the genomic predictions of the phenotype or using the genomic predictions of the pedigree-based, all data included, EBV as classifiers was moderately accurate (area under the ROC curve 0.60 and 0.66, respectively).ConclusionsThe estimate of the heritability for VNN symptomatology indicates that it is feasible to implement selective breeding programs for increased resistance to VNN of sea bream larvae/juveniles. Exploiting genomic information offers the opportunity of developing prediction tools for VNN resistance, and genomic models can be trained on EBV using all data or phenotypes, with minimal differences in classification performance of the trait phenotype. In a long-term view, the weakening of the genomic ties between animals in the training and test sets leads to decreased genomic prediction accuracies, thus periodical update of the reference population with new data is mandatory.

Funder

Horizon 2020 Framework Programme

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Animal Science and Zoology,General Medicine,Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3