Genomic regions and signaling pathways associated with indicator traits for feed efficiency in juvenile Atlantic salmon (Salmo salar)

Author:

Dvergedal HanneORCID,Harvey Thomas Nelson,Jin Yang,Ødegård Jørgen,Grønvold Lars,Sandve Simen Rød,Våge Dag Inge,Moen Thomas,Klemetsdal Gunnar

Abstract

Abstract Background One objective of this study was to identify putative quantitative trait loci (QTL) that affect indicator phenotypes for growth, nitrogen, and carbon metabolism in muscle, liver, and adipose tissue, and for feed efficiency. Another objective was to perform an RNAseq analysis (184 fish from all families), to identify genes that are associated with carbon and nitrogen metabolism in the liver. The material consisted of a family experiment that was performed in freshwater and included 2281 individuals from 23 full-sib families. During the 12-day feed conversion test, families were randomly allocated to family tanks (50 fish per tank and 2 tanks per family) and fed a fishmeal-based diet labeled with the stable isotopes 15N and 13C at inclusion levels of 2 and 1%, respectively. Results Using a linear mixed-model algorithm, a QTL for pre-smolt growth was identified on chromosome 9 and a QTL for carbon metabolism in the liver was identified on chromosome 12 that was closely related to feed conversion ratio on a tank level. For the indicators of feed efficiency traits that were derived from the stable isotope ratios (15N and 13C) of muscle tissue and growth, no convincing QTL was detected, which suggests that these traits are polygenic. The transcriptomic analysis showed that high carbon and nitrogen metabolism was associated with individuals that convert protein from the feed more efficiently, primarily due to higher expression of the proteasome, lipid, and carbon metabolic pathways in liver. In addition, we identified seven transcription factors that were associated with carbon and nitrogen metabolism and located in the identified QTL regions. Conclusions Analyses revealed one QTL associated with pre-smolt growth and one QTL for carbon metabolism in the liver. Both of these traits are associated with feed efficiency. However, more accurate mapping of the putative QTL will require a more diverse family material. In this experiment, fish that have a high carbon and nitrogen metabolism in the liver converted protein from the feed more efficiently, potentially because of a higher expression of the proteasome, lipid, and carbon metabolic pathways in liver. Within the QTL regions, we detected seven transcription factors that were associated with carbon and nitrogen metabolism.

Funder

Norges Forskningsråd

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Animal Science and Zoology,General Medicine,Ecology, Evolution, Behavior and Systematics

Reference37 articles.

1. Frankic A, Hershner C. Sustainable aquaculture: developing the promise of aquaculture. Aquacult Int. 2003;11:517–30.

2. Directorate of Fisheries. Lønnsomhetsundersøkelse for laks og regnbueørret: Matfiskproduksjon. Directorate of Fisheries; 2018. https://www.fiskeridir.no/Akvakultur/Statistikk-akvakultur/Loennsomhetsundersoekelse-for-laks-og-regnbueoerret/Matfiskproduksjon-laks-og-regnbueoerret . Accessed 20 Feb 2019 (In Norwegian).

3. Dvergedal H, Ødegård J, Øverland M, Mydland LT, Klemetsdal G. Indications of a negative genetic association between growth and digestibility in juvenile Atlantic salmon (Salmo salar). Aquaculture. 2019a;510:66–72.

4. Dvergedal H, Ødegård J, Øverland M, Mydland LT, Klemetsdal G. Selection for feed efficiency in Atlantic salmon using individual indicator traits based on stable isotope profiling. Genet Sel Evol. 2019b;51:13.

5. Houlihan DF, Carter CG, McCarthy ID. Chapter 8 Protein synthesis in fish. In: Hochachka PW, Mommsen TP, editors. Biochemistry and Molecular Biology of Fishes. Amsterdam: Elsevier Press; 1995. p. 191–220.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3