A comprehensive study on size and definition of the core group in the proven and young algorithm for single-step GBLUP

Author:

Abdollahi-Arpanahi RostamORCID,Lourenco Daniela,Misztal Ignacy

Abstract

Abstract Background The algorithm for proven and young (APY) has been suggested as a solution for recursively computing a sparse representation for the inverse of a large genomic relationship matrix (G). In APY, a subset of genotyped individuals is used as the core and the remaining genotyped individuals are used as noncore. Size and definition of the core are relevant research subjects for the application of APY, especially given the ever-increasing number of genotyped individuals. Methods The aim of this study was to investigate several core definitions, including the most popular animals (MPA) (i.e., animals with high contributions to the genetic pool), the least popular males (LPM), the least popular females (LPF), a random set (Rnd), animals evenly distributed across genealogical paths (Ped), unrelated individuals (Unrel), or based on within-family selection (Fam), or on decomposition of the gene content matrix (QR). Each definition was evaluated for six core sizes based on prediction accuracy of single-step genomic best linear unbiased prediction (ssGBLUP) with APY. Prediction accuracy of ssGBLUP with the full inverse of G was used as the baseline. The dataset consisted of 357k pedigreed Duroc pigs with 111k pigs with genotypes and ~ 220k phenotypic records. Results When the core size was equal to the number of largest eigenvalues explaining 50% of the variation of G (n = 160), MPA and Ped core definitions delivered the highest average prediction accuracies (~ 0.41−0.53). As the core size increased to the number of eigenvalues explaining 99% of the variation in G (n = 7320), prediction accuracy was nearly identical for all core types and correlations with genomic estimated breeding values (GEBV) from ssGBLUP with the full inversion of G were greater than 0.99 for all core definitions. Cores that represent all generations, such as Rnd, Ped, Fam, and Unrel, were grouped together in the hierarchical clustering of GEBV. Conclusions For small core sizes, the definition of the core matters; however, as the size of the core reaches an optimal value equal to the number of largest eigenvalues explaining 99% of the variation of G, the definition of the core becomes arbitrary.

Funder

National Institute of Food and Agriculture

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Animal Science and Zoology,General Medicine,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3