E-GWAS: an ensemble-like GWAS strategy that provides effective control over false positive rates without decreasing true positives

Author:

Zhou Guang-Liang,Xu Fang-Jun,Qiao Jia-Kun,Che Zhao-Xuan,Xiang Tao,Liu Xiao-Lei,Li Xin-Yun,Zhao Shu-Hong,Zhu Meng-JinORCID

Abstract

Abstract Background Genome-wide association studies (GWAS) are an effective way to explore genotype–phenotype associations in humans, animals, and plants. Various GWAS methods have been developed based on different genetic or statistical assumptions. However, no single method is optimal for all traits and, for many traits, the putative single nucleotide polymorphisms (SNPs) that are detected by the different methods do not entirely overlap due to the diversity of the genetic architecture of complex traits. Therefore, multi-tool-based GWAS strategies that combine different methods have been increasingly employed. To take this one step further, we propose an ensemble-like GWAS strategy (E-GWAS) that statistically integrates GWAS results from different single GWAS methods. Results E-GWAS was compared with various single GWAS methods using simulated phenotype traits with different genetic architectures. E-GWAS performed stably across traits with different genetic architectures and effectively controlled the number of false positive genetic variants detected without decreasing the number of true positive variants. In addition, its performance could be further improved by using a bin-merged strategy and the addition of more distinct single GWAS methods. Our results show that the numbers of true and false positive SNPs detected by the E-GWAS strategy slightly increased and decreased, respectively, with increasing bin size and when the number and the diversity of individual GWAS methods that were integrated in E-GWAS increased, the latter being more effective than the bin-merged strategy. The E-GWAS strategy was also applied to a real dataset to study backfat thickness in a pig population, and 10 candidate genes related to this trait and expressed in adipose-associated tissues were identified. Conclusions Using both simulated and real datasets, we show that E-GWAS is a reliable and robust strategy that effectively integrates the GWAS results of different methods and reduces the number of false positive SNPs without decreasing that of true positive SNPs.

Funder

National Key Research and Development Program of China

Earmarked Fund for China Agriculture Research System

Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Animal Science and Zoology,General Medicine,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3