Abstract
AbstractNext-generation sequencing is a promising approach for the detection of causal variants within previously identified quantitative trait loci. Because of the costs of re-sequencing experiments, this application is currently mainly restricted to subsets of animals from already genotyped populations. Imputation from a lower to a higher marker density could represent a useful complementary approach. An analysis of the literature shows that several strategies are available to select animals for re-sequencing. This study demonstrates an animal selection workflow under practical conditions. Our approach considers different data sources and limited resources such as budget and availability of sampling material. The workflow combines previously described approaches and makes use of genotype and pedigree information from a Landrace and Large White population. Genotypes were phased and haplotypes were accurately estimated with AlphaPhase. Then, AlphaSeqOpt was used to optimize selection of animals for re-sequencing, reflecting the existing diversity of haplotypes. AlphaSeqOpt and ENDOG were used to select individuals based on pedigree information and by taking into account key animals that represent the genetic diversity of the populations. After the best selection criteria were determined, a subset of 57 animals was selected for subsequent re-sequencing. In order to evaluate and assess the advantage of this procedure, imputation accuracy was assessed by setting a set of single nucleotide polymorphism (SNP) chip genotypes to missing. Accuracy values were compared to those of alternative selection scenarios and the results showed the clear benefits of a targeted selection within this practical-driven approach. Especially imputation of low-frequency markers benefits from the combined approach described here. Accuracy was increased by up to 12% compared to a randomized or exclusively haplotype-based selection of sequencing candidates.
Funder
Landwirtschaftliche Rentenbank
Rheinische Friedrich-Wilhelms-Universität Bonn
Publisher
Springer Science and Business Media LLC
Subject
Genetics,Animal Science and Zoology,General Medicine,Ecology, Evolution, Behavior and Systematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献