Two approaches to account for genotype-by-environment interactions for production traits and age at first calving in South African Holstein cattle

Author:

Ducrocq VincentORCID,Cadet Astrid,Patry Clotilde,van der Westhuizen Lene,van Wyk Jacob B.,Neser Frederick Wilhelm Cornelius

Abstract

Abstract Background If not accounted for, genotype x environment (G×E) interactions can decrease the accuracy of genetic evaluations and the efficiency of breeding schemes. These interactions are reflected by genetic correlations between countries lower than 1. In countries that are characterized by a heterogeneity of production systems, they are also likely to exist within country, especially when production systems are diverse, as is the case in South Africa. We illustrate several alternative approaches to assess the existence of G×E interactions for production traits and age at first calving in Holsteins in South Africa. Data from 257,836 first lactation cows were used. First, phenotypes that were collected in different regions were considered as separate traits and various multivariate animal models were fitted to calculate the estimates of heritability for each region and the genetic correlations between them. Second, a random regression approach using long-term averages of climatic variables at the herd level in a reaction norm model, was used as an alternative way to account for G×E interactions. Genetic parameter estimates and goodness-of-fit measures were compared. Results Genetic correlations between regions as low as 0.80 or even lower were found for production traits, which reflect strong G×E interactions within South Africa that can be linked to the production systems (pasture vs total mixed ration). A random regression model including average rainfall during several decades in the herd surroundings gave the best goodness-of-fit for production traits. This can be related to a preference for total mixed ration on farms with limited rainfall. For age at first calving, the best model was based on a random regression on maximum relative humidity and maximum temperature in summer. Conclusions Our results indicate that G×E interactions can be accounted for when genetic evaluations of production traits are performed in South Africa, by either considering production records in different regions as different correlated traits or using a reaction norm model based on herd management characteristics. From a statistical point of view, climatic variables such as average rainfall over a long period can be included in a random regression model as proxies of herd production systems and climate.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Animal Science and Zoology,General Medicine,Ecology, Evolution, Behavior and Systematics

Reference34 articles.

1. South Africa Yearbook, 2018/19. Government communication and information system. Republic of South Africa. https://www.gcis.gov.za/south-africa-yearbook-201819/. Accessed 20 Jun 2021.

2. Wikipedia. Climate of South Africa. 2020. https://en.wikipedia.org/wiki/Climate_of_South_Africa/. Accessed 21 Sep 2021.

3. Meissner HH, Scholtz MM, Palmer AR. Sustainability of the South African livestock sector towards 2050. Part 1: Worth and impact of the sector. S Afr J Anim Sci. 2013;43:282–97.

4. Scholtz MM, Du Toit J, Neser FWC. Antagonism in the carbon footprint between beef and dairy production systems. S Afr J Anim Sci. 2014;44:S17-20.

5. Muller CJC, Scholtz MM. Ways to reduce the environmental impact of dairy farming. Appl Anim Husb Rural Dev. 2014;7:31–7.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3