Genetic variants associated with two major bovine milk fatty acids offer opportunities to breed for altered milk fat composition

Author:

Knutsen Tim MartinORCID,Olsen Hanne Gro,Ketto Isaya Appelesy,Sundsaasen Kristil Kindem,Kohler Achim,Tafintseva Valeria,Svendsen Morten,Kent Matthew Peter,Lien Sigbjørn

Abstract

Abstract Background Although bovine milk is regarded as healthy and nutritious, its high content of saturated fatty acids (FA) may be harmful to cardiovascular health. Palmitic acid (C16:0) is the predominant saturated FA in milk with adverse health effects that could be countered by substituting it with higher levels of unsaturated FA, such as oleic acid (C18:1cis-9). In this work, we performed genome-wide association analyses for milk fatty acids predicted from FTIR spectroscopy data using 1811 Norwegian Red cattle genotyped and imputed to a high-density 777k single nucleotide polymorphism (SNP)-array. In a follow-up analysis, we used imputed whole-genome sequence data to detect genetic variants that are involved in FTIR-predicted levels of C16:0 and C18:1cis-9 and explore the transcript profile and protein level of candidate genes. Results Genome-wise significant associations were detected for C16:0 on Bos taurus (BTA) autosomes 11, 16 and 27, and for C18:1cis-9 on BTA5, 13 and 19. Closer examination of a significant locus on BTA11 identified the PAEP gene, which encodes the milk protein β-lactoglobulin, as a particularly attractive positional candidate gene. At this locus, we discovered a tightly linked cluster of genetic variants in coding and regulatory sequences that have opposing effects on the levels of C16:0 and C18:1cis-9. The favourable haplotype, linked to reduced levels of C16:0 and increased levels of C18:1cis-9 was also associated with a marked reduction in PAEP expression and β-lactoglobulin protein levels. β-lactoglobulin is the most abundant whey protein in milk and lower levels are associated with important dairy production parameters such as improved cheese yield. Conclusions The genetic variants detected in this study may be used in breeding to produce milk with an improved FA health-profile and enhanced cheese-making properties.

Funder

Norges Forskningsråd

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Animal Science and Zoology,General Medicine,Ecology, Evolution, Behavior and Systematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3