Performance of the No-U-Turn sampler in multi-trait variance component estimation using genomic data

Author:

Nishio MotohideORCID,Arakawa Aisaku

Abstract

Abstract Background Multi-trait genetic parameter estimation is an important topic for target traits with few records and with a low heritability and when the genetic correlation between target and secondary traits is strong. However, estimating correlations between multiple traits is difficult for both Bayesian and non-Bayesian inferences. We extended a Hamiltonian Monte Carlo approach using the No-U-Turn Sampler (NUTS) to a multi-trait animal model and investigated the performance of estimating (co)variance components and breeding values, compared to those for restricted maximum likelihood and Gibbs sampling with a population size of 2314 and 578 in a simulated and real pig dataset, respectively. For real data, we used publicly available data for three traits from the Pig Improvement Company (PIC). For simulation data, we generated two quantitative traits by using the genotypes of the PIC data. For NUTS, two prior distributions were adopted: Lewandowski-Kurowicka-Joe (LKJ) and inverse-Wishart distributions. Results For the two simulated traits with heritabilities of 0.1 and 0.5, most estimates of the genetic and residual variances for NUTS with the LKJ prior were closer to the true values and had smaller root mean square errors and smaller mean absolute errors, compared to NUTS with inverse-Wishart priors, Gibbs sampling and restricted maximum likelihood. The accuracies of estimated breeding values for lowly heritable traits for NUTS with LKJ and inverse-Wishart priors were 14.8% and 11.1% higher than those for Gibbs sampling and restricted maximum likelihood, respectively, with a population size of 578. For the trivariate animal model with real pig data, the estimates of the genetic correlations for Gibbs sampling and restricted maximum likelihood were strongly affected by population size, compared to NUTS. For both the simulated and pig data, the genetic variances and heritabilities for NUTS with an inverse-Wishart prior were overestimated for low-heritability traits when the population size was 578. Conclusions The accuracies of variance components and breeding values estimates for a multi-trait animal model using NUTS with the LKJ prior were equal to or higher than those obtained with restricted maximum likelihood or Gibbs sampling. Therefore, when the population size is small, NUTS with an LKJ prior could be an alternative sampling method for multi-trait analysis in animal breeding.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Animal Science and Zoology,General Medicine,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3