Predictive performances of animal models using different multibreed relationship matrices in systems with rotational crossbreeding

Author:

Poulsen Bjarke GroveORCID,Ostersen Tage,Nielsen Bjarne,Christensen Ole Fredslund

Abstract

Abstract Background In livestock breeding, selection for some traits can be improved with direct selection for crossbred performance. However, genetic analyses with phenotypes from crossbred animals require methods for multibreed relationship matrices; especially when some animals are rotationally crossbred. Multiple methods for multibreed relationship matrices exist, but there is a lack of knowledge on how these methods compare for prediction of breeding values with phenotypes from rotationally crossbred animals. Therefore, the objective of this study was to compare models that use different multibreed relationship matrices in terms of ability to predict accurate and unbiased breeding values with phenotypes from two-way rotationally crossbred animals. Methods We compared four methods for multibreed relationship matrices: numerator relationship matrices (NRM), García-Cortés and Toro’s partial relationship matrices (GT), Strandén and Mäntysaari’s approximation to the GT method (SM), and one NRM with metafounders (MF). The methods were compared using simulated data. We simulated two phenotypes; one with and one without dominance effects. Only crossbred animals were phenotyped and only purebred animals were genotyped. Results The MF and GT methods were the most accurate and least biased methods for prediction of breeding values in rotationally crossbred animals. Without genomic information, all methods were almost equally accurate for prediction of breeding values in purebred animals; however, with genomic information, the MF and GT methods were the most accurate. The GT, MF, and SM methods were the least biased methods for prediction of breeding values in purebred animals. Conclusions For prediction of breeding values with phenotypes from rotationally crossbred animals, models using the MF method or the GT method were generally more accurate and less biased than models using the SM method or the NRM method.

Funder

Innovationsfonden

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Animal Science and Zoology,General Medicine,Ecology, Evolution, Behavior and Systematics

Reference34 articles.

1. Falconer DS, Mackay T. Correlated response to selection. Introduction to quantitative genetics. Harlow: Prentice Hall; 1996. p. 317–21.

2. Wientjes YCJ, Calus MPL. Board invited review: the purebred-crossbred correlation in pigs: a review of theory, estimates, and implications. J Anim Sci. 2017;95:3467–78.

3. Oldenbroek K, Waaij LVD. The different crossbreeding systems and their applicability. Textbook animal breeding: animal breeding and genetics for BSc students. Wageningen: Centre for Genetic Resources and Animal Breeding and Genomics; 2014. p. 236–41.

4. Lo LL, Fernando RL, Grossman M. Covariance between relatives in multibreed populations: additive model. Theor Appl Genet. 1993;87:423–30.

5. Wei M, van der Werf JHJ. Maximizing genetic response in crossbreds using both purebred and crossbred information. Anim Sci. 1994;59:401–13.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3