Estimating genetic parameters of digital behavior traits and their relationship with production traits in purebred pigs

Author:

Hollifield Mary KateORCID,Chen Ching-Yi,Psota Eric,Holl Justin,Lourenco Daniela,Misztal Ignacy

Abstract

Abstract Background With the introduction of digital phenotyping and high-throughput data, traits that were previously difficult or impossible to measure directly have become easily accessible, offering the opportunity to enhance the efficiency and rate of genetic gain in animal production. It is of interest to assess how behavioral traits are indirectly related to the production traits during the performance testing period. The aim of this study was to assess the quality of behavior data extracted from day-wise video recordings and estimate the genetic parameters of behavior traits and their phenotypic and genetic correlations with production traits in pigs. Behavior was recorded for 70 days after on-test at about 10 weeks of age and ended at off-test for 2008 female purebred pigs, totaling 119,812 day-wise records. Behavior traits included time spent eating, drinking, laterally lying, sternally lying, sitting, standing, and meters of distance traveled. A quality control procedure was created for algorithm training and adjustment, standardizing recording hours, removing culled animals, and filtering unrealistic records. Results Production traits included average daily gain (ADG), back fat thickness (BF), and loin depth (LD). Single-trait linear models were used to estimate heritabilities of the behavior traits and two-trait linear models were used to estimate genetic correlations between behavior and production traits. The results indicated that all behavior traits are heritable, with heritability estimates ranging from 0.19 to 0.57, and showed low-to-moderate phenotypic and genetic correlations with production traits. Two-trait linear models were also used to compare traits at different intervals of the recording period. To analyze the redundancies in behavior data during the recording period, the averages of various recording time intervals for the behavior and production traits were compared. Overall, the average of the 55- to 68-day recording interval had the strongest phenotypic and genetic correlation estimates with the production traits. Conclusions Digital phenotyping is a new and low-cost method to record behavior phenotypes, but thorough data cleaning procedures are needed. Evaluating behavioral traits at different time intervals offers a deeper insight into their changes throughout the growth periods and their relationship with production traits, which may be recorded at a less frequent basis.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3