Approaching autozygosity in a small pedigree of Gochu Asturcelta pigs

Author:

Arias Katherine D.ORCID,Gutiérrez Juan PabloORCID,Fernández Iván,Álvarez IsabelORCID,Goyache FélixORCID

Abstract

Abstract Background In spite of the availability of single nucleotide polymorphism (SNP) array data, differentiation between observed homozygosity and that caused by mating between relatives (autozygosity) introduces major difficulties. Homozygosity estimators show large variation due to different causes, namely, Mendelian sampling, population structure, and differences among chromosomes. Therefore, the ascertainment of how inbreeding is reflected in the genome is still an issue. The aim of this research was to study the usefulness of genomic information for the assessment of genetic diversity in the highly endangered Gochu Asturcelta pig breed. Pedigree depth varied from 0 (founders) to 4 equivalent discrete generations (t). Four homozygosity parameters (runs of homozygosity, FROH; heterozygosity-rich regions, FHRR; Li and Horvitz’s, FLH; and Yang and colleague’s FYAN) were computed for each individual, adjusted for the variability in the base population (BP; six individuals) and further jackknifed over autosomes. Individual increases in homozygosity (depending on t) and increases in pairwise homozygosity (i.e., increase in the parents’ mean) were computed for each individual in the pedigree, and effective population size (Ne) was computed for five subpopulations (cohorts). Genealogical parameters (individual inbreeding, individual increase in inbreeding, and Ne) were used for comparisons. Results The mean F was 0.120 ± 0.074 and the mean BP-adjusted homozygosity ranged from 0.099 ± 0.081 (FLH) to 0.152 ± 0.075 (FYAN). After jackknifing, the mean values were slightly lower. The increase in pairwise homozygosity tended to be twofold higher than the corresponding individual increase in homozygosity values. When compared with genealogical estimates, estimates of Ne obtained using FYAN tended to have low root-mean-squared errors. However, Ne estimates based on increases in pairwise homozygosity using both FROH and FHRR estimates of genomic inbreeding had lower root-mean-squared errors. Conclusions Parameters characterizing homozygosity may not accurately depict losses of variability in small populations in which breeding policy prohibits matings between close relatives. After BP adjustment, the performance of FROH and FHRR was highly consistent. Assuming that an increase in homozygosity depends only on pedigree depth can lead to underestimating it in populations with shallow pedigrees. An increase in pairwise homozygosity computed from either FROH or FHRR is a promising approach for characterizing autozygosity.

Funder

Agencia Española de Investigación

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Animal Science and Zoology,General Medicine,Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3