Origin, evolution, and tissue-specific functions of the porcine repetitive element 1

Author:

Zheng Min,Guo Tianfu,Yang Bin,Zhang Zhiyan,Huang Lusheng

Abstract

Abstract Background The porcine repetitive element 1 (PRE1) is the most abundant short interspersed nuclear element (SINE) in the Sus scrofa genome and it has been suggested that some PRE1 can have regulatory functions. The million copies of PRE1 in the porcine genome have accumulated abundant CpG dinucleotides and unique structural variations, such as direct repeats and patterns of sequence degeneration. The aims of this study were to analyse these structural variations to trace the origin and evolutionary pattern of PRE1 and to investigate potential methylation-related functions of PRE1 based on methylation patterns of PRE1 CpG dinucleotides in different tissues. Results We investigated the evolutionary trajectory of PRE1 and found that PRE1 originated from the ancestral CHRS-S1 family through three main successive partial duplications. We found that the partial duplications and deletions of PRE1 were likely due to RNA splicing events during retrotransposition. Functionally, correlation analysis showed that the methylation levels of 103 and 261 proximal PRE1 were, respectively, negatively and positively correlated with the expression levels of neighboring genes (Spearman correlation, P < 0.01). Further epigenomic analysis revealed that, in the testis, demethylation of proximal PRE1 in the HORMAD1 and HACD3 genes had tissue-specific enhancer and promoter functions, while in the muscle, methylation of proximal PRE1 repeats in the TCEA3 gene had an enhancer function. Conclusions The characteristic sequences of PRE1 reflect unique patterns of origin and evolution and provide a structural basis for diverse regulatory functions.

Funder

The National Key R & D Program of China

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Animal Science and Zoology,General Medicine,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3