Variants at the ASIP locus contribute to coat color darkening in Nellore cattle

Author:

Trigo Beatriz B.,Utsunomiya Adam T. H.,Fortunato Alvaro A. A. D.,Milanesi Marco,Torrecilha Rafaela B. P.,Lamb Harrison,Nguyen Loan,Ross Elizabeth M.,Hayes Ben,Padula Rômulo C. M.,Sussai Thayla S.,Zavarez Ludmilla B.,Cipriano Rafael S.,Caminhas Maria M. T.,Lopes Flavia L.,Pelle Cassiano,Leeb Tosso,Bannasch Danika,Bickhart Derek,Smith Timothy P. L.,Sonstegard Tad S.,Garcia José F.,Utsunomiya Yuri T.ORCID

Abstract

Abstract Background Nellore cattle (Bos indicus) are well-known for their adaptation to warm and humid environments. Hair length and coat color may impact heat tolerance. The Nellore breed has been strongly selected for white coat, but bulls generally exhibit darker hair ranging from light grey to black on the head, neck, hump, and knees. Given the potential contribution of coat color variation to the adaptation of cattle populations to tropical and sub-tropical environments, our aim was to map positional and functional candidate genetic variants associated with darkness of hair coat (DHC) in Nellore bulls. Results We performed a genome-wide association study (GWAS) for DHC using data from 432 Nellore bulls that were genotyped for more than 777 k single nucleotide polymorphism (SNP) markers. A single major association signal was detected in the vicinity of the agouti signaling protein gene (ASIP). The analysis of whole-genome sequence (WGS) data from 21 bulls revealed functional variants that are associated with DHC, including a structural rearrangement involving ASIP (ASIP-SV1). We further characterized this structural variant using Oxford Nanopore sequencing data from 13 Australian Brahman heifers, which share ancestry with Nellore cattle; we found that this variant originates from a 1155-bp deletion followed by an insertion of a transposable element of more than 150 bp that may impact the recruitment of ASIP non-coding exons. Conclusions Our results indicate that the variant ASIP sequence causes darker coat pigmentation on specific parts of the body, most likely through a decreased expression of ASIP and consequently an increased production of eumelanin.

Funder

Sao Paulo Research Foundation

National Council for Scientific and Technological Development

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil

Meat and Livestock Australia

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Animal Science and Zoology,General Medicine,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3