Abstract
Abstract
Background
Although the accumulation of whole-genome sequencing (WGS) data has accelerated the identification of mutations underlying complex traits, its impact on the accuracy of genomic predictions is limited. Reliable genotyping data and pre-selected beneficial loci can be used to improve prediction accuracy. Previously, we reported a low-coverage sequencing genotyping method that yielded 11.3 million highly accurate single-nucleotide polymorphisms (SNPs) in pigs. Here, we introduce a method termed selective linkage disequilibrium pruning (SLDP), which refines the set of SNPs that show a large gain during prediction of complex traits using whole-genome SNP data.
Results
We used the SLDP method to identify and select markers among millions of SNPs based on genome-wide association study (GWAS) prior information. We evaluated the performance of SLDP with respect to three real traits and six simulated traits with varying genetic architectures using two representative models (genomic best linear unbiased prediction and BayesR) on samples from 3579 Duroc boars. SLDP was determined by testing 180 combinations of two core parameters (GWAS P-value thresholds and linkage disequilibrium r2). The parameters for each trait were optimized in the training population by five fold cross-validation and then tested in the validation population. Similar to previous GWAS prior-based methods, the performance of SLDP was mainly affected by the genetic architecture of the traits analyzed. Specifically, SLDP performed better for traits controlled by major quantitative trait loci (QTL) or a small number of quantitative trait nucleotides (QTN). Compared with two commercial SNP chips, genotyping-by-sequencing data, and an unselected whole-genome SNP panel, the SLDP strategy led to significant improvements in prediction accuracy, which ranged from 0.84 to 3.22% for real traits controlled by major or moderate QTL and from 1.23 to 11.47% for simulated traits controlled by a small number of QTN.
Conclusions
The SLDP marker selection method can be incorporated into mainstream prediction models to yield accuracy improvements for traits with a relatively simple genetic architecture, however, it has no significant advantage for traits not controlled by major QTL. The main factors that affect its performance are the genetic architecture of traits and the reliability of GWAS prior information. Our findings can facilitate the application of WGS-based genomic selection.
Funder
948 Program of the Ministry of Agriculture of China
Science and Technology Innovation Strategy Projects of Guangdong Province
Open Research Program of State Key Laboratory for Agro-Biotechnology
Publisher
Springer Science and Business Media LLC
Subject
Genetics,Animal Science and Zoology,General Medicine,Ecology, Evolution, Behavior and Systematics
Reference51 articles.
1. Meuwissen TH, Hayes BJ, Goddard ME. Prediction of total genetic value using genome-wide dense marker maps. Genetics. 2001;157:1819–29.
2. Wiggans GR, VanRaden PM, Cooper TA. The genomic evaluation system in the United States: past, present, future. J Dairy Sci. 2011;94:3202–11.
3. VanRaden PM. Symposium review: how to implement genomic selection. J Dairy Sci. 2020;103:5291–301.
4. Song H, Zhang J, Jiang Y, Gao H, Tang S, Mi S, et al. Genomic prediction for growth and reproduction traits in pig using an admixed reference population. J Anim Sci. 2017;95:3415–24.
5. Jannink JL, Lorenz AJ, Iwata H. Genomic selection in plant breeding: from theory to practice. Briefings Funct Genomics. 2010;9:166–77.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献