Genomic prediction based on selective linkage disequilibrium pruning of low-coverage whole-genome sequence variants in a pure Duroc population

Author:

Zhu Di,Zhao Yiqiang,Zhang Ran,Wu Hanyu,Cai Gengyuan,Wu Zhenfang,Wang Yuzhe,Hu XiaoxiangORCID

Abstract

Abstract Background Although the accumulation of whole-genome sequencing (WGS) data has accelerated the identification of mutations underlying complex traits, its impact on the accuracy of genomic predictions is limited. Reliable genotyping data and pre-selected beneficial loci can be used to improve prediction accuracy. Previously, we reported a low-coverage sequencing genotyping method that yielded 11.3 million highly accurate single-nucleotide polymorphisms (SNPs) in pigs. Here, we introduce a method termed selective linkage disequilibrium pruning (SLDP), which refines the set of SNPs that show a large gain during prediction of complex traits using whole-genome SNP data. Results We used the SLDP method to identify and select markers among millions of SNPs based on genome-wide association study (GWAS) prior information. We evaluated the performance of SLDP with respect to three real traits and six simulated traits with varying genetic architectures using two representative models (genomic best linear unbiased prediction and BayesR) on samples from 3579 Duroc boars. SLDP was determined by testing 180 combinations of two core parameters (GWAS P-value thresholds and linkage disequilibrium r2). The parameters for each trait were optimized in the training population by five fold cross-validation and then tested in the validation population. Similar to previous GWAS prior-based methods, the performance of SLDP was mainly affected by the genetic architecture of the traits analyzed. Specifically, SLDP performed better for traits controlled by major quantitative trait loci (QTL) or a small number of quantitative trait nucleotides (QTN). Compared with two commercial SNP chips, genotyping-by-sequencing data, and an unselected whole-genome SNP panel, the SLDP strategy led to significant improvements in prediction accuracy, which ranged from 0.84 to 3.22% for real traits controlled by major or moderate QTL and from 1.23 to 11.47% for simulated traits controlled by a small number of QTN. Conclusions The SLDP marker selection method can be incorporated into mainstream prediction models to yield accuracy improvements for traits with a relatively simple genetic architecture, however, it has no significant advantage for traits not controlled by major QTL. The main factors that affect its performance are the genetic architecture of traits and the reliability of GWAS prior information. Our findings can facilitate the application of WGS-based genomic selection.

Funder

948 Program of the Ministry of Agriculture of China

Science and Technology Innovation Strategy Projects of Guangdong Province

Open Research Program of State Key Laboratory for Agro-Biotechnology

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Animal Science and Zoology,General Medicine,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3