Spatial modelling improves genetic evaluation in smallholder breeding programs

Author:

Selle Maria L.ORCID,Steinsland Ingelin,Powell Owen,Hickey John M.,Gorjanc Gregor

Abstract

Abstract Background Breeders and geneticists use statistical models to separate genetic and environmental effects on phenotype. A common way to separate these effects is to model a descriptor of an environment, a contemporary group or herd, and account for genetic relationship between animals across environments. However, separating the genetic and environmental effects in smallholder systems is challenging due to small herd sizes and weak genetic connectedness across herds. We hypothesised that accounting for spatial relationships between nearby herds can improve genetic evaluation in smallholder systems. Furthermore, geographically referenced environmental covariates are increasingly available and could model underlying sources of spatial relationships. The objective of this study was therefore, to evaluate the potential of spatial modelling to improve genetic evaluation in dairy cattle smallholder systems. Methods We performed simulations and real dairy cattle data analysis to test our hypothesis. We modelled environmental variation by estimating herd and spatial effects. Herd effects were considered independent, whereas spatial effects had distance-based covariance between herds. We compared these models using pedigree or genomic data. Results The results show that in smallholder systems (i) standard models do not separate genetic and environmental effects accurately, (ii) spatial modelling increases the accuracy of genetic evaluation for phenotyped and non-phenotyped animals, (iii) environmental covariates do not substantially improve the accuracy of genetic evaluation beyond simple distance-based relationships between herds, (iv) the benefit of spatial modelling was largest when separating the genetic and environmental effects was challenging, and (v) spatial modelling was beneficial when using either pedigree or genomic data. Conclusions We have demonstrated the potential of spatial modelling to improve genetic evaluation in smallholder systems. This improvement is driven by establishing environmental connectedness between herds, which enhances separation of genetic and environmental effects. We suggest routine spatial modelling in genetic evaluations, particularly for smallholder systems. Spatial modelling could also have a major impact in studies of human and wild populations.

Funder

The Research Council of Norway

Biotechnology and Biological Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Animal Science and Zoology,General Medicine,Ecology, Evolution, Behavior and Systematics

Reference86 articles.

1. Weigel KA, VanRaden PM, Norman HD, Grosu H. A 100-year review: methods and impact of genetic selection in dairy cattle-from daughter-dam comparisons to deep learning algorithms. J Dairy Sci. 2017;100:10234–50.

2. Dekkers JC, Hospital F. Multifactorial genetics: the use of molecular genetics in the improvement of agricultural populations. Nat Rev Genet. 2002;3:22–32.

3. Rademaker CJ, Bebe BO, van der Lee J, Kilelu C, Tonui C. Sustainable growth of the Kenyan dairy sector: a quick scan of robustness, reliability and resilience. Wageningen University & Research; 2016. https://library.wur.nl/WebQuery/wurpubs/508760. Accessed 16 Aug 2020.

4. Philipsson J, Zonabend E, Bett RC, Okeyo AM. Global perspectives on animal genetic resources for sustainable agriculture and food production in the tropics. In: Ojango M, Malmfors B, Okeyo AM, editors. Animal genetics training resource, version 3. Nairobi: University of Nairobi; 2011. https://cgspace.cgiar.org/bitstream/handle/10568/3665/Module1.pdf?sequence=5. Accessed 16 Aug 2020.

5. Majiwa EB, Kavoi MM, Murage H. Smallholder dairying in Kenya: the assessment of the technical efficiency using the stochastic production frontier model. J Agric Sci Technol. 2017;14:3–16.

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3