Inbreeding depression is associated with recent homozygous-by-descent segments in Belgian Blue beef cattle

Author:

Naji Maulana MughitzORCID,Gualdrón Duarte José Luis,Forneris Natalia Soledad,Druet Tom

Abstract

Abstract Background Cattle populations harbor generally high inbreeding levels that can lead to inbreeding depression (ID). Here, we study ID with different estimators of the inbreeding coefficient F, evaluate their sensitivity to used allele frequencies (founder versus sample allele frequencies), and compare effects from recent and ancient inbreeding. Methods We used data from 14,205 Belgian Blue beef cattle genotyped cows that were phenotyped for 11 linear classification traits. We computed estimators of F based on the pedigree information (FPED), on the correlation between uniting gametes (FUNI), on the genomic relationship matrix (FGRM), on excess homozygosity (FHET), or on homozygous-by-descent (HBD) segments (FHBD). Results FUNI and FGRM were sensitive to used allele frequencies, whereas FHET and FHBD were more robust. We detected significant ID for four traits related to height and length; FHBD and FUNI presenting the strongest associations. Then, we took advantage of the classification of HBD segments in different age-related classes (the length of an HBD segment being inversely related to the number of generations to the common ancestors) to determine that recent HBD classes (common ancestors present approximately up to 15 generations in the past) presented stronger ID than more ancient HBD classes. We performed additional analyses to check whether these observations could result from a lower level of variation in ancient HBD classes, or from a reduced precision to identify these shorter segments. Conclusions Overall, our results suggest that mutational load decreases with haplotype age, and that mating plans should consider mainly the levels of recent inbreeding.

Funder

Fonds De La Recherche Scientifique - FNRS

Service Public de Wallonie

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Animal Science and Zoology,General Medicine,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3