Abstract
Abstract
Background
Optimum Glide Path (OGP) is a new reciprocating motion aiming to perform efficient glide path preparation in constricted canals. The aim of this study was to investigate and compare manual and OGP movement in terms of canal transportation and centering ability in glide path preparation of constricted canals.
Methods
Thirty constricted mesial root canals of mandibular molars, with initial apical size no larger than ISO#8, were selected and negotiated with #6–#8 K-files under the microscope. Canals were randomly divided into two experimental groups: Group 1 (MAN, n = 15): Glide path was established by using #10-#15 stainless steel K-files manually; Group 2 (OGP, n = 15): #10-#15 Mechanical Glide Path super-files were used with OGP motion (OGP 90°, 300 rpm). Each instrument was used to prepare only 2 canals (as in one mesial root). Canals were scanned before and after glide path preparation with micro-computed tomography (micro-CT) to evaluate root canal transportation and centering ratio at 1, 3 and 5 mm levels from the root apex. File distortions and separations were recorded. Paired t-test was used to statistically evaluate the data (P < .05).
Results
Group 2 showed a significantly lower transportation value than group 1 at 1-mm and 3-mm levels (P < .05), however the difference at 5-mm level was not significant. There was no significant difference regarding the centering ratio between the groups. Six #10 K-files were severely distorted in group 1, while no file separation or distortion was found in group 2.
Conclusions
OGP motion performed significantly less canal transportation (apical 3 mm) and file distortion during glide path establishment in constricted canals comparing to manual motion, while the centering ability between the two was similar.
Clinical relevance
OGP reciprocating motion provides a safer and efficient clinical approach compared to traditional manual motion in glide path establishment with small files in constricted canals.
Publisher
Springer Science and Business Media LLC
Reference33 articles.
1. Peters OA, Peters CI, Basrani B. Cleaning and shaping of the root canal system. In: Hargreaves KM, Berman LH, editors. Cohen’s pathways of the pulp. 11th ed. St. Louis: Elsevier; 2006. p. 209–79.
2. Kwak SW, Ha JH, Cheung GS, Kim HC, Kim SK. Effect of the glide path establishment on the torque generation to the files during instrumentation: an in vitro measurement. J Endod. 2018;44(3):496–500.
3. Ha JH, Park SS. Influence of glide path on the screw-in effect and torque of nickel–titanium rotary files in simulated resin root canals. Restor Dent Endod. 2012;37(4):215–9.
4. West J. The magic of mastering the glide path: what every endodontist should know. CA: American Association of Endodontists Annual Session. San Diego; 2010.
5. Berutti E, Cantatore G, Castellucci A, Chiandussi G, Pera F, Migliaretti G, et al. Use of nickel–titanium rotary PathFile to create the glide path: comparison with manual preflaring in simulated root canals. J Endod. 2009;35(3):408–12.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献