Advancing the assessment of pacifier effects with a novel computational method

Author:

Pereira R.,Romero J.,Norton A.,Nóbrega J. M.

Abstract

Abstract Background Numerous studies have demonstrated a high likelihood of malocclusions resulting from non-nutritive sucking. Consequently, quantifying the impact of pacifiers can potentially aid in preventing the development or exacerbation of malocclusions and guide the design of improved performance pacifiers. Methods This work proposes and assesses a computational methodology that can effectively gather crucial information and provide more precise data regarding the consequences of non-nutritive pacifier sucking. The computational framework utilized is based on solids4Foam [1, 2], a collection of numerical solvers developed within the OpenFOAM® computational library [3]. The computational model focuses on the palate of a six-month-old baby and incorporates various components such as palate tissues, pacifier and tongue, and considers the negative intraoral pressure generated and the tongue displacement. Different models were tested, each offering varying levels of detail in representing the palate structure. These models range from a simplified approach, with one tissue, to a more intricate representation, involving up to five different tissues, offering a more comprehensive palate model compared to existing literature. Results The analysis of results involved examining the distribution of stress on the palate surface, as well as the displacement and forces exerted on the dental crowns. By comparing the obtained results, it was possible to evaluate the precision of the approaches previously described in the literature. The findings revealed that the predictions were less accurate when using the simplified model with a single tissue for the palate, which is the most common approach proposed in the literature. In contrast, the results demonstrated that the palate model with the most intricate structure, incorporating five different tissues, yielded distinct outcomes compared to all other combinations. Conclusions The computational methodology proposed, employing the most detailed palate model, has demonstrated its effectiveness and necessity in obtaining accurate data on the impact of non-nutritive sucking habits, which are recognized as a primary contributor to the development of dental malocclusions. In the future, this approach could be extended to conduct similar studies encompassing diverse pacifier designs, sizes, and age groups. This would foster the design of innovative pacifiers that mitigate the adverse effects of non-nutritive sucking on orofacial structures.

Funder

FEDER funds through the COMPETE 2020 Programme and National Funds through FCT

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3