Intaglio surface trueness of dentures bases fabricated with 3D printing vs. conventional workflow: a clinical study

Author:

Faur Andrei-Bogdan,Rotar Raul Nicolae,Jivănescu Anca

Abstract

AbstractThe latest generation of intraoral scanners can record the prosthetic field with relative ease, high accuracy and comfort for the patient, and have enabled fully digital protocols for designing and manufacturing complete dentures. The present study aims to examine the intaglio surface trueness of 3D printed maxillary dentures produced by fully digital workflow in comparison with dentures produced by analogue clinical and laboratory prosthetic workflow. The edentulous maxillary arch of 15 patients was scanned with an intraoral scanner as well as the intaglio of the delivered conventional denture. The scan of the edentulous arch was imported into a dental design software to produce the denture base which was then 3D printed. The intaglio surface of the finished 3D printed denture bases was digitized and used to assess the trueness of the printed denture bases compared to the intaglio surface of the conventional dentures as well as performing a trueness comparison in relation to the scanned edentulous arches. The dataset (n = 30) was subjected to Kruskal-Wallis test analysis, the significance level being established at α = 0.05. The results of the study showed that the printed group displayed better trueness values with a median of 176.9 μm while the analogue group showed a median of 342 μm. Employing a fully digital workflow to produce 3D-printed denture bases yields a consistent and precise manufacturing method when accounting for the intaglio surface of the denture.

Funder

We would like to acknowledge VICTOR BABES UNIVERSITY OF MEDICINE AND PHARMACY TIMISOARA for their support in covering the costs of publication for this research paper.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3