Cytotoxicity and reactive oxygen species production induced by different co-monomer eluted from nanohybrid dental composites

Author:

Jiang En-Shi,Moon Wonjoon,Lim Bum-Soon,Chang Juhea,Chung Shin Hye

Abstract

AbstractBackgroundSafety issues for dental restorative composites are critical to material selection, but, limited information is available to dental practitioners. This study aimed to compare the chemical and biological characteristics of three nanohybrid dental composites by assessing filler particle analysis, monomer degree of conversion (DC), the composition of eluates, and cytotoxicity and reactive oxygen species (ROS) production in fibroblasts.MethodsThree nanohybrid composites (TN, Tetric N-Ceram; CX, Ceram X Sphere Tec One; and DN, DenFil NX) were used. The size distribution and morphology of the filler particles were analysed using scanning electron microscopy (n = 5). The DC was measured via micro-Raman spectroscopy (n = 5). For the component analysis, methanol eluates from the light-polymerised composites were evaluated by gas chromatography/mass spectrometry (n = 3). The eluates were prepared from the polymerised composites after 24 h in a cell culture medium. A live/dead assay (n = 9) and Water-Soluble Tetrazolium-1 assay (n = 9) were performed and compared with negative and positive controls. The ROS in composites were compared with NC. Statistical significance in differences was assessed using a t-test and ANOVA (α = 0.05).ResultsMorphological variations in different-sized fillers were observed in the composites.The DC values were not significantly different among the composites. The amounts of 2-hydroxyethyl methacrylate (HEMA) were higher in TN than DN (p = 0.0022) and triethylene glycol dimethacrylate (TEGDMA) in CX was higher than in others (p < 0.0001). The lowest cell viability was shown in CX (p < 0.0001) and the highest ROS formation was detected in TN (p < 0.0001).ConclusionsThree nanohybrid dental composites exhibited various compositions of filler sizes and resin components, resulting in different levels of cytotoxicity and ROS production. Chemical compositions of dental composites can be considered with their biological impact on safety issues in the intraoral use of dental restorative composites. CX with the highest TEGDMA showed the highest cytotoxicity induced by ROS accumulation. DN with lower TEGDMA and HEMA presented the highest cell viability.

Funder

This work was supported by the Korea Medical Device Development Fund grant funded by the Korea government

Publisher

Springer Science and Business Media LLC

Subject

General Dentistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3