Author:
Zhou Guanglei,Zhao Yu,Cai Liangjing,Liu Liwei,Li Xu,Sun Lu,Deng Jiayin
Abstract
Abstract
Background
Calcium silicate-based bioceramics have been applied in endodontics as advantageous materials for years, many chemical components and new synthesizing methods were used to improve the base formulation of the materials for positively affecting the sealers properties. Recently, a novel biomaterial formulation, grounded in strontium silicate, has been introduced to the market, offering potential advancements in the field.
Objective
To comparatively analyze the cytotoxicity and cell migration effects of a novel strontium silicate-based bioceramic material (CRoot SP) and those of calcium silicate-based (iRoot SP) and epoxide amine resin (AH Plus) sealers on stem cells derived from rat apical papilla(rSCAPs).
Methods
rSCAPs were isolated and characterized in vitro and subsequently cultured in the presence of various concentrations of CRoot SP, iRoot SP and AH Plus extracts. Cytotoxicity was assessed by CCK-8 assay, and cell-migration capacity was assessed by using wound healing assays .
Results
No significant differences in cell viability were observed in the 0.02 mg/mL and 0.2 mg/mL sealer groups. The cell viability of CRoot SP was consistently greater than that of iRoot SP at concentrations of 5 mg/mL and 10 mg/mL across all time points. Maximum cytotoxic effect was noted on day 5 with 10 mg/mL AH Plus.The scratch was partly healed by cell migration in all groups at 24 h, and the 0.02 mg/mL, and 0.2 mg/mL CRoot SP exerted beneficial effects on rSCAPs migration.
Conclusions
CRoot SP exhibited less cytotoxic than the iRoot SP and AH Plus extracts after setting. A lower concentration of CRoot SP thus promotes the cell migration capacity of rSCAPs, and it may achieve better tissue repair during root canal treatment.
Funder
Science and Technology Project of the Tianjin Binhai New Area Health Commission
Publisher
Springer Science and Business Media LLC
Reference67 articles.
1. Onseca DA, Paula AB, Marto CM. Biocompatibility of root canal sealers: a systematic review of in vitro and in vivo studies. Mater (Basel). 2019;12(24):1–34.
2. Candeiro GT, Correia FC, Duarte MA, Ribeiro-Siqueira DC, Gavini G. Evaluation of radiopacity, pH, release of calcium ions, and flow of a bioceramic root canal sealer. J Endod. 2012;38(6):842–5.
3. Zhang W, Li Z, Peng B. Effects of iRoot SP on mineralization-related genes expression in MG63 cells. J Endod. 2010;36(12):1978–82.
4. Guven EP, Tasli PN, Yalvac ME, Sofev N, Kayahan MB, Sahin F. In vitro comparison of induction capacity and biomineralization ability of mineral trioxide aggregate and a bioceramic root canal sealer. Int Endod J. 2013;46(12):1173–82.
5. Chang SW, Lee SY, Kang SK, Kum KY, Kim EC. In vitro biocompatibility,inflammatory response, and osteogenic potential of 4 root canal sealers: Sealapex, Sankin apatite root sealer, MTA Fillapex, and iRoot SP root canal sealer. J Endod. 2014;40(10):1642–8.