Environmental sustainability in endodontics. A life cycle assessment (LCA) of a root canal treatment procedure

Author:

Duane BrettORCID,Borglin Linnea,Pekarski Stephanie,Saget Sophie,Duncan Henry Fergus

Abstract

Abstract Background To analyse via life cycle analysis (LCA) the global resource use and environmental output of the endodontic procedure. Methodology An LCA was conducted to measure the life cycle of a standard/routine two-visit RCT. The LCA was conducted according to the International Organization of Standardization guidelines; ISO 14040:2006. All clinical elements of an endodontic treatment (RCT) were input into OpenLCA software using process and flows from the ecoinvent database. Travel to and from the dental clinic was not included. Environmental outputs included abiotic depletion, acidification, freshwater ecotoxicity/eutrophication, human toxicity, cancer/non cancer effects, ionizing radiation, global warming, marine eutrophication, ozone depletion, photochemical ozone formation and terrestrial eutrophication. Results An RCT procedure contributes 4.9 kg of carbon dioxide equivalent (CO2 eq) emissions. This is the equivalent of a 30 km drive in a small car. The main 5 contributors were dental clothing followed by surface disinfection (isopropanol), disposable bib (paper and plastic), single-use stainless steel instruments and electricity use. Although this LCA has illustrated the effect endodontic treatment has on the environment, there are a number of limitations that may influence the validity of the results. Conclusions The endodontic team need to consider how they can reduce the environmental burden of endodontic care. One immediate area of focus might be to consider alternatives to isopropyl alcohol, and look at paper, single use instrument and electricity use. Longer term, research into environmentally-friendly medicaments should continue to investigate the replacement of current cytotoxic gold standards with possible natural alternatives. Minimally invasive regenerative endodontics techniques designed to stimulate repair or regeneration of damaged pulp tissue may also be one way of improving the environmental impact of an RCT.

Publisher

Springer Science and Business Media LLC

Subject

General Dentistry

Reference53 articles.

1. Brundtland Report (1987) World Commission on Environment and Development (WCED). Our Common Future. [WWW document]. URL: https://www.are.admin.ch/are/en/home/sustainable-development/international-cooperation/2030agenda/un-_-milestones-in-sustainable-development/1987%2D%2Dbrundtland-report.html [Accessed 15 Jan 2019].

2. Eckelman MJ. Estimated global disease burden from United States healthcare sector greenhouse gas emissions. Am J Public Health. 2017;108:120–2.

3. Costello A. A, Allen M, Ball A et al. Managing the health effects of climate change. Lancet 2019; 373:1693–1733.

4. Paris Agreement (2015) United Nations Framework Convention on Climate Change. Available at: https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement [Accessed 8 Sept 2019].

5. Oehlmann J, Schulte-Oehlmann U, Kloas W, et al. A critical analysis of the biological impacts of plasticizers on wildlife. Philos Trans R Soc B. 2009;364:2047–62.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3