Abstract
Abstract
Background
The study objective was to examine the effect of arginine-sodium fluoride (Arg-NaF) varnish on preventing enamel erosion by acidic paediatric liquid medicaments (PLM).
Methods
The treatment groups were: 1) 2% Arg-NaF; 2) 4% Arg-NaF; 3) 8% Arg-NaF; 4) NaF; 5) MI (CPP-ACFP) varnishes; and 6) no varnish. The pH of PLM (paracetamol and chlorpheniramine) was measured at baseline and after immersing the Perspex® blocks coated with varnishes at 0 min, 30 min, 1 h, and 4 h. Seventy-two enamel specimens (n = 72) were randomly divided into 2 groups by PLM and further by treatment groups. Then, the specimens were pre-treated with varnishes and subjected to erosive cycles (5 min, 2×/day for 4 days) by PLM. After each erosive challenge, the specimens were stored in artificial saliva. At baseline and after 4 days, the specimens were assessed for surface roughness (Ra) using 2D-surface profilometric analysis (SPA) and atomic force microscopy (AFM). Additionally, the Ca/P ratio was determined using scanning electron microscopy with energy-dispersive X-ray spectroscopy. Paired samples dependent t-test, 1-way ANOVA and 2-way ANOVA with Bonferroni post-hoc tests were used to analyse data with the level of significance set at p < 0.05.
Results
The pH of PLM with 8% Arg-NaF was significantly higher than the other groups at 30 min and 4 h (p < 0.05). With paracetamol, no significant difference was observed between the baseline and post-erosive cycle measured enamel Ra (by SPA/AFM) and Ca/P ratio for all treatment groups (p > 0.05). The Ra determined by AFM, at the post-erosive cycle with chlorpheniramine, when treated with 4 and 8% Arg-NaF was significantly lower than the other groups (p < 0.05); except CPP-ACFP (p > 0.05). With the chlorpheniramine post-erosive cycle, the Ca/P ratio for 4, 8% Arg-NaF and CPP-ACFP treated specimens was significantly higher than the baseline Ca/P (p < 0.05).
Conclusion
The 4%/8% Arg-NaF and MI varnish® application exhibit an enhanced preventive effect against low pH (pH < 3.0) PLM-mediated enamel erosive challenges compared to 5% NaF varnish.
Publisher
Springer Science and Business Media LLC