Evaluating the effect of poly (amidoamine) treated bioactive glass nanoparticle incorporated in universal adhesive on bonding to artificially induced caries affected dentin

Author:

Rao Akhil C.,Kondas Vijay Venkatesh,Nandini Vidyashree,Kirana Ravi,Yadalam Pradeep Kumar,Eswaramoorthy Rajalakshmanan

Abstract

Abstract Background The purpose of this study was to evaluate remineralisation and its effect on microtensile bond-strength of artificially induced caries affected dentin (CAD) when treated with a commercial universal adhesive modified with poly(amidoamine) dendrimer (PAMAM) loaded mesoporous bioactive glass nanoparticles (A-PMBG). Material and methods Mesoporous bioactive glass nanoparticles (MBG) were synthesised using sol–gel process, where PAMAM was loaded (P-MBG) and added to commercial adhesive at different weight percentages (0.2, 0.5, 1 and 2 wt%). First, rheological properties of commercial and modified adhesives were evaluated. The effect of remineralization/hardness and microtensile bond-strength (MTBs) of those samples that mimicked the rheological properties of commercial adhesives were evaluated using Vickers hardness tester and universal testing machine respectively. Scanning-Electron microscope was used to visualize failed samples of MTBs and remineralization samples. Both evaluations were carried out at 1-,3 and 6-month intervals, samples being stored in stimulated salivary fluid during each time interval. Results Addition of nanoparticles altered the rheological properties. With increase in the weight percentage of nanoparticles in commercial adhesive, there was significant increase in degree of conversion, viscosity and sedimentation rate (p < 0.05). The 0.2 and 0.5 wgt% groups closely mimicked the properties of commercial adhesive and were evaluated for remineralization and MTBs. After 6 months, 0.2wgt% group showed increased MTBs (p < 0.05) and 0.5wgt% group increased remineralization/hardness (p < 0.05). Conclusion The complex of PAMAM-MBG-Universal adhesive can remineralize the demineralised CAD thereby improving its bond-strength when evaluated for up to 6-months.

Publisher

Springer Science and Business Media LLC

Subject

General Dentistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3