Optimum design of reference points distribution in three-dimensional reconstruction of dental model in intercuspal position

Author:

Wu Yujia,Hu Zhewen,Zhang Xinyue,Bai Hefei,Sun Yuchun,Fan Baolin

Abstract

Abstract Purpose The scanning of plaster models for three-dimensional (3D) construction requires their rigid fixation in the intercuspal position. Factors such as installation, motion, and scanning procedures influenced the accuracy of this method, which ultimately influence the results. Therefore, the present study attempted to provide an optimal and accurate method with less complex procedures and a more accessible equipment for determining the intercuspal relation in the 3D occlusal construction of dental models. Methods A pair of plastic mounting plates that could be directly attached to a mechanical articulator was designed and 3D printed. Nine axial hemispherical concaves were introduced on the axial surface of each plate. The rigidly fixed maxillary and mandibular dental models were scanned directly. The distances DR between nine pairs of concaves on both mounting plates adhered to the maxillary and mandibular sections of the articulator were measured using the three-coordinate measuring machine Faro Edge as the reference. The present study comprised seven test groups varying in number and location. Assessing the reference points from each of the seven groups performed the 3D construction. The Geomagic Studio software was used to construct the concaves of digital casts, and the distances DM between the pairs of concaves were measured as test values. Variable differences between DR and DM were analyzed. Results An optimum distribution scheme was obtained for reference point registration by quantitatively evaluating accuracy levels of the 3D constructions of different reference point distribution patterns. This scheme can serve as a reference for related studies and dental clinic operations. Conclusions Three-dimensional construction of the intercuspal relation during scanning of the maxillary and mandibular models with an accuracy of 0.046 mm ± 0.009 mm can be achieved using the improved design of mounting plates.

Funder

National Nature Science Foundation of China

he Capital’s Funds for Health Improvement and Research

the Fund of Peking University Hospital of Stomatology

the Program of New Clinical Techniques and Therapies of Peking University School and Hospital of Stomatology

Publisher

Springer Science and Business Media LLC

Subject

General Dentistry

Reference22 articles.

1. Albuha Al-Mussawi RM, Farid F. Computer-based technologies in dentistry: types and applications. J Dent (Tehran). 2016;13:215–22.

2. Grant GT, Campbell SD, Masri RM, Andersen MR. Glossary of digital dental terms: American College of Prosthodontists. J Prosthodont. 2016;25:S2-9.

3. Van Noort R. The future of dental devices is digital. Dent Mater. 2012;28:3–12.

4. Miyazaki T, Hotta Y, Kunii J, Kuriyama S, Tamaki Y. A review of dental CAD/CAM: current status and future perspectives from 20 years of experience. Dent Mater J. 2009;28:44–56.

5. Jain R, Takkar R, Jain G, Takkar R, Deora N, Jain PR. CAD-CAM the future of digital dentistry: a review. Ann Prosthodont Restor Dent. 2016;2:33–6.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3