Author:
Lim Ho-Kyung,Jung Seok-Ki,Kim Seung-Hyun,Cho Yongwon,Song In-Seok
Abstract
Abstract
Background
The inferior alveolar nerve (IAN) innervates and regulates the sensation of the mandibular teeth and lower lip. The position of the IAN should be monitored prior to surgery. Therefore, a study using artificial intelligence (AI) was planned to image and track the position of the IAN automatically for a quicker and safer surgery.
Methods
A total of 138 cone-beam computed tomography datasets (Internal: 98, External: 40) collected from multiple centers (three hospitals) were used in the study. A customized 3D nnU-Net was used for image segmentation. Active learning, which consists of three steps, was carried out in iterations for 83 datasets with cumulative additions after each step. Subsequently, the accuracy of the model for IAN segmentation was evaluated using the 50 datasets. The accuracy by deriving the dice similarity coefficient (DSC) value and the segmentation time for each learning step were compared. In addition, visual scoring was considered to comparatively evaluate the manual and automatic segmentation.
Results
After learning, the DSC gradually increased to 0.48 ± 0.11 to 0.50 ± 0.11, and 0.58 ± 0.08. The DSC for the external dataset was 0.49 ± 0.12. The times required for segmentation were 124.8, 143.4, and 86.4 s, showing a large decrease at the final stage. In visual scoring, the accuracy of manual segmentation was found to be higher than that of automatic segmentation.
Conclusions
The deep active learning framework can serve as a fast, accurate, and robust clinical tool for demarcating IAN location.
Funder
Korea Medical Device Development Fund grant funded by the Korea government
Publisher
Springer Science and Business Media LLC
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献