The effectiveness of an actuator-driven pulsed water jet for the removal of artificial dental calculus: a preliminary study

Author:

Sato Yuka,Iikubo MasahiroORCID,Nishioka Takashi,Yoda Nobuhiro,Kusunoki Tetsuya,Nakagawa Atsuhiro,Sasaki Keiichi,Tominaga Teiji

Abstract

Abstract Background While hand and ultrasonic scalers are the primary tools used for the removal of dental calculus in periodontal treatment, many studies have shown that they also damage the enamel surface. We have developed a novel actuator-driven pulsed water jet (ADPJ) system, which has the ability to selectively remove materials depending on their stiffness. Considering the different material properties between teeth and dental calculus, it might be possible to develop the ADPJ to remove dental calculus without damage to the tooth’s enamel surface using a suitable jet pressure. Therefore, the aim of this study was to assess the effectiveness of the ADPJ in removing dental calculus, and the surface features of the teeth after its use. Methods A total of 93 artificial teeth coated with artificial dental calculus were examined in this study. The weights of 90 teeth were measured before and after the use of ADPJ, which had an applied voltage setting of 150, 200, or 240 V. The three remaining teeth were instrumented with a conventional hand scaler, ultrasonic scaler, or ADPJ (set at 240 V). Damage to the artificial tooth surfaces was evaluated using 5% Evans blue dye under an optical microscope. Furthermore, apatite pellets, which are utilized as experimental substitutes for natural teeth, were assessed after the use of ADPJ and both conventional scalers. Results The ADPJ significantly reduced the amount of artificial calculus, and the removal rate was dependent on the applied voltage. No damage was observed on the surface of the artificial tooth and apatite pellet following the use of ADPJ, in contrast to the conventional scalers. Conclusions The results of this study demonstrate the in vitro effectiveness of ADPJ in the removal of dental calculus, without causing damage to tooth surfaces.

Funder

Japanese Ministry of Education, Culture, Sports Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

General Dentistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3