Accuracy and efficiency of dynamic navigated root-end resection in endodontic surgery: a pilot in vitro study

Author:

Liu Si-Min,Peng Li,Zhao Yi-Jiao,Han Bing,Wang Xiao-Yan,Wang Zu-Hua

Abstract

Abstract Background The operation accuracy and efficiency of dynamic navigated endodontic surgery were evaluated through in vitro experiments. This study provides a reference for future clinical application of dynamic navigation systems in endodontic surgery. Materials and methods 3D-printed maxillary anterior teeth were used in the preparation of models for endodontic surgery. Endodontic surgery was performed with and without dynamic navigation by an operator who was proficient in dynamic navigation technology but had no experience in endodontic surgery. Optical scanning data were applied to evaluate the length and angle deviations of root-end resection. And the operation time was recorded. T tests were used to analyze the effect of dynamic navigation technology on the accuracy and duration of endodontic surgery. Results With dynamic navigation, the root-end resection length deviation was 0.46 ± 0.06 mm, the angle deviation was 2.45 ± 0.96°, and the operation time was 187 ± 22.97 s. Without dynamic navigation, the root-end resection length deviation was 1.20 ± 0.92 mm, the angle deviation was 16.20 ± 9.59°, and the operation time was 247 ± 61.47 s. Less deviation was achieved and less operation time was spent with than without dynamic navigation (P < 0.01). Conclusion The application of a dynamic navigation system in endodontic surgery can improve the accuracy and efficiency significantly for operators without surgical experience and reduce the operation time.

Funder

Hygiene and Health Development Scientific Research Fostering Plan of Haidian District Beijing

Peking University School and Hospital of Stomatology grant

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3