Micro computed tomography (Micro-CT) characterization of root and root canal morphology of mandibular first premolars: a systematic review and meta-analysis

Author:

Karobari Mohmed Isaqali,Batul Rumesa,Khan Mohammad,Patil Santosh R.,Basheer Syed Nahid,Rezallah Nader Nabil Fouad,Luke Alexander Maniangat,Noorani Tahir Yusuf

Abstract

Abstract Introduction Mandibular first premolars are familiar with their varied root canal morphology, causing difficulties and challenges for successful endodontic procedures. This systematic review and meta-analysis aim to study the characterization of root and canal morphology of the first mandibular premolar using micro-computed tomography. Methodology The literature search was conducted using electronic web databases like PubMed, Scopus, ScienceDirect and Cochrane with the chosen MeSH key words and data was retrieved until May 2023. Further to perform the statistical analysis, R v 4.3.1 software with "meta", 'metafor" "metaviz" " ggplot2" package was used, and results were represented by odds ratios (OR) and the percentage of forest plots along a 95 per cent confidence interval (CI). Results The total number of studies meeting the inclusion criteria was 13; these studies were conducted on mandibular first premolar using Micro-CT; the total sample size was 1817. To scan the sample, an X-ray micro-focus CT system (Siemens Inveon CT, Erlangen, Germany) was used in four studies and seven different machines were used in the respective studies. Mimics 10.01 software (Materialize, Leuven, Belgium) and NRecon v.1.6.9 software (Bruker, Kontich, Belgium) were commonly operated. The minimum and maximum voxel size ranges between 11.94 and 50 μm. Vertucci’s classification was frequently used (9), while one study applied Ahmed et al. and Vertucci’s classification. Conclusion This systematic review provides essential information about the root and canal configurations, radicular grooves, accessory canals, and apical foramina through Micro-CT, aiming to improve the accuracy of endodontic treatment and help practitioners.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3