Author:
Kumar Naresh,Amin Faiza,Dahri Waheed Murad,Khan Sara,Zaidi Huma,Rahman Sehrish,Farhan Tooba,Zafar Muhammad Sohail,Fareed Muhammad Amber
Abstract
Abstract
Objectives
The objective of this study was to evaluate the effect of acidic beverages on the surface topography and elemental composition of human teeth.
Methods
A total of five highly acidic beverages (Red Bull, Pepsi, Apple Cidra, Tang Mosambi, and Tang Orange) were investigated. The tooth specimens of experimental groups were submerged in each beverage and incubated at 37 °C for 7 days, whereas, the tooth specimens of control groups were placed in distilled water. Afterwards, tooth specimens were analyzed using scanning electron microscopic (SEM), stereomicroscopic, and energy dispersive x-ray (EDX) techniques.
Results
All experimental groups revealed a decline in the tooth elements compared to controls, however, such decline was not statistically significant. Nevertheless, comparing the experimental groups, the Red Bull beverage caused a marked reduction in the percentage of both calcium and phosphorus elements compared to the Pepsi, Apple Cidra, Tang Mosambi, and Tang Orange beverages but it was insignificant as well in contrast to its control counterpart. All five acidic beverages demonstrated erosive potential under SEM analysis; however, each group of specimens showed a diverse amount of demineralization. In addition, all experimental groups exhibited significant discoloration of tooth specimens compared to their respective control counterparts.
Conclusions
Within the limitations of study, all five acidic beverages demonstrated erosive potential in the simulated in vitro conditions under SEM analysis; however, each group of specimens exhibited a different extent of demineralization. In addition, the overall effect of all beverages was insignificant under EDX analysis as no substantial difference was revealed between the elemental composition of experimental and control group specimens.
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献