Authentication of differential gene expression in oral squamous cell carcinoma using machine learning applications

Author:

Pratama Rian,Hwang Jae Joon,Lee Ji Hye,Song Giltae,Park Hae Ryoun

Abstract

Abstract Background Recently, the possibility of tumour classification based on genetic data has been investigated. However, genetic datasets are difficult to handle because of their massive size and complexity of manipulation. In the present study, we examined the diagnostic performance of machine learning applications using imaging-based classifications of oral squamous cell carcinoma (OSCC) gene sets. Methods RNA sequencing data from SCC tissues from various sites, including oral, non-oral head and neck, oesophageal, and cervical regions, were downloaded from The Cancer Genome Atlas (TCGA). The feature genes were extracted through a convolutional neural network (CNN) and machine learning, and the performance of each analysis was compared. Results The ability of the machine learning analysis to classify OSCC tumours was excellent. However, the tool exhibited poorer performance in discriminating histopathologically dissimilar cancers derived from the same type of tissue than in differentiating cancers of the same histopathologic type with different tissue origins, revealing that the differential gene expression pattern is a more important factor than the histopathologic features for differentiating cancer types. Conclusion The CNN-based diagnostic model and the visualisation methods using RNA sequencing data were useful for correctly categorising OSCC. The analysis showed differentially expressed genes in multiwise comparisons of various types of SCCs, such as KCNA10, FOSL2, and PRDM16, and extracted leader genes from pairwise comparisons were FGF20, DLC1, and ZNF705D.

Funder

Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT

Publisher

Springer Science and Business Media LLC

Subject

General Dentistry

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3